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Imbalanced Hyperspectral Image Classification With
an Adaptive Ensemble Method Based on SMOTE

and Rotation Forest With Differentiated
Sampling Rates

Wei Feng , Wenjiang Huang, and Wenxing Bao

Abstract— Rotation forest (RoF) is a powerful ensemble classi-
fier and has been demonstrated the outstanding performance in
hyperspectral data classification. However, the classification task
suffers from the class imbalanced problem which has been consid-
ered to be one of the most important challenges. The traditional
construction method of RoF biases classifying the majority classes
and ignores recognizing the minority classes samples. This letter
proposes a novel adaptive ensemble method based on SMOTE
and RoF with differentiated sampling rates (AdaSRoF) for the
multiclass imbalance problem. The proposed method adaptively
generates several balanced data sets with more diversity and less
noise by using SMOTE and a dynamic data sampling ratio for
base classifiers. The obtained results on two publicly available
hyperspectral images show that the proposed method can get
more diversity and better performance than support vector
machine (SVM), random forest (RF), and RoF in multiclass
imbalance learning.

Index Terms— Classification, ensemble learning, hyperspectral
image, multiclass imbalance learning, SMOTE.

I. INTRODUCTION

HYPERSPECTRAL image classification has been a
vibrant area of research in recent years [1]. However,

the classification task suffers from the class imbalanced
problem, which has been considered to be one of the most
important challenges [2], [3]. The class imbalance occurs
when the number of instances belonging to one of the classes
is much larger than the numbers in other class [1], [3].
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Classification of imbalanced data is difficult because most
of the canonical classifiers are driven by overall accuracy
(OA), hence fail in the identification of the minority class,
besides generally all classifiers present some performance
loss when the data are imbalanced [4], [5]. In imbalance
learning, there are two scenarios, binary data and multiclass
data. Some difficulties, such as the uneven distribution of
examples among classes, the small sample size, and the class
overlapping, make multiclass imbalance learning tasks much
harder than binary ones [5]–[8].

The ideal objective of multiclass imbalance learning can
be described as how to design a classifier that could
result in high accuracies for the minority classes with-
out sacrificing the accuracies of the majority classes [9].
Many methods have been devoted to imbalanced learning
problems [9], [10]. However, most of the reported solutions
focus on the binary data but not applicable to multiclass
cases. The resampling approaches are the popular imbalance
learning methods [11], [12]. Since these methods balance the
data distribution in the preprocessing step and do not need
modifying the learning model, they are easy to be developed
for multiclass task [9]. Among these approaches, random
undersampling (RUS) and random oversampling (ROS) are
two of the most popular resampling methods [2]. However,
RUS discards examples from the majority classes randomly,
thus could miss important information. ROS could avoid
information loss but has a risk of overfitting. Synthetic minor-
ity oversampling technique SMOTE [13] is a very famous
oversampling method. It could avoid overfitting, but the dis-
advantage of this method is to produce additional noise [7].
Consequently, how to properly implement SMOTE to balance
the complex multiclass data set is a great challenge.

Ensemble learning has got a successful application
to classify hyperspectral images [14]–[16]. Rotation forest
(RoF), a powerful ensemble classifier, has attracted lots of
attentions [14]–[18]. It obtains outstanding performance by
combining several randomization techniques such as data
bootstrap, random feature selection, and feature space rotation.
Some improved versions of the RoF have been proposed
and verified better performances [18], [19]. However, most
of these methods are implemented depending on a balanced
training set. At present, there is less investigation of RoF for
the multiclass imbalanced problem, especially in hyperspectral
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study. In addition, the traditional construction method of RoF
biases classifying the majority classes and ignores recognizing
the minority classes samples [5]. Therefore, some special
developments are necessary for the RoF ensemble to hand such
a difficulty problem. Diversity is essential in order to build
an accurate ensemble of classifiers in imbalance learning [5].
Hence, how to properly increase the diversity of RoF to make
the method more suited to the imbalanced data classification
is an interesting research direction.

The major contribution of this letter is to propose a novel
adaptive ensemble method based on SMOTE and RoF with
differentiated sampling rates (AdaSRoF) for the multiclass
imbalance problem of hyperspectral image classification. The
proposed method adaptively generates several balanced data
sets with more diversity and less noise by using SMOTE
and a dynamic data sampling ratio for base classifiers. The
remaining part of this letter is organized as follows. Section II
describes in detail the proposed methodology. Section III
shows the results and discussion. The conclusions are given
in Section IV.

II. METHOD

A. Differentiated Sampling Rates
The proposed method adopts the differentiated sampling

rates for different base classifiers. The instances of all minor-
ity classes are sampled randomly with different sampling
rates β% before implementing a SMOTE. The differentiated
sampling strategy is useful for the diversity increase in the
ensemble system and then improves the system’s performance.
The following example is used to illustrate the definition of
β% and of the yielded training set. When the range of the
sampling ratio β% is set from 10% to 100% and N1 is assumed
as the number of training instances of the largest class, for the
first classifier, β% equals 10%, then β% · N1 instances will
be sampled with replacement from the original minority class
data set. To match the size of the largest class, (1− β%) · N1
minority class instances will be generated by SMOTE and
combined with the previous sampled instances to construct
the first balanced data set. Then, the β% will be updated
to 20% to yield a diversity training set for the second base
classifier. When β% equals to 100%, it is completely ROS. If
T = 30 base classifiers are built, then every ten classifiers will
have different β% values, which range from 10% to 100% [9].

B. Adaptive Weight Function

The proposed method uses an adaptive weight function
to mitigate SMOTE’s risk of producing artificial noise. The
adaptive weight function is introduced in (1). Let us denote a
training set as S = {(x1, y1), . . . , (xN , yN )}, where the sample
size is N and the class label of the instance xi is yi . The
significance of a training sample (xi , yi ) is assessed by

W (xi ) = 1− 1
∑L

c=1(vc)
|v(xi , yi )−max

c �=yi
v(xi , c)|

= 1− 1

T
|v(xi , yi )−max

c �=yi
v(xi , c)| (1)

where v(xi , yi ) is the vote number of the true class y and
v(xi , c) is the vote number of any other class c. The high

Algorithm 1 Adaptive Ensemble Method Based on SMOTE
and RoF With Differentiated Sampling Rates (AdaSRoF)
1: Training phase
2: Input: S = [X, Y ] = (x1, y1), (x2, y2, ), · · · , (xN , yN ):

training set; F: feature set; L: number of classes; Ni :
the sample size of i th class; β%: resampling rate;
K : number of feature subsets; ζ : base classifier; T :
ensemble size; E = ∅: an ensemble.

3: Process:
4: Initialize the weight distribution for all xi ∈ S as W1(xi ) =

1/N , and sort the classes c of the imbalanced data S in
descending order according to their sample sizes.

5: for t=1:T do
6: Compose a set S1,t by sampling N1 instances (with

replacement) from the largest class 1 according to
the instance weights Wt (xi )

7: for c=2:L do
8: Obtain Sc,t by resampling (with replacement) β%·N1

instances according to the adaptive weight func-
tion Wt from the original class c

9: Product S′c,t with the sample size of (1 − β%) · N1
by SMOTE algorithm

10: end for
11: Construct a new balanced data set St by combining

the sampled data set Sc,t (c = 1, ..., L) with the
artificially generated data set S′c,t (c = 2, ..., L).

12: Carry out a random assignment on the feature set F of
St for K disjoint subsets Ft,k

13: for k=1:K do
14: Compose the data St,k for the features in Ft,k frame

and apply PCA on St,k to get the coefficients ct,k
15: end for
16: Construct a rotation matrix M ′t by rearranging the

columns of the matrix Mt composed of ct,k to match
the order of original features F, then compose the
diversity training set S′t = [St · M ′t , Yt ]

17: Train a classifier ζt on S′t
18: E ← E ∪ ζt
19: Change the sampling ratio β%.
20: for all xi ∈ S do
21: Update Wt (xi) according to the equation 1
22: Wt+1(xi )← Wt (xi)
23: end for
24: end for
25: Output: The ensemble E

weight W (x) of a sample means that this sample is closed to
the classification decision boundary in the current forest and
will be selected with high probability to produce the synthetic
instances for minority classes by combining SMOTE for the
next classifier. Hence, with the growth of the ensemble size,
the weights of the boundary instances are increased and higher
than those of other types of instances.

C. Adaptive Ensemble Method Based on SMOTE and
Rotation Forest With Differentiated Sampling Rates

The process of the proposed adaptive ensemble method
based on SMOTE and RoF with differentiated sampling
rates (AdaSRoF) is detailed in Algorithm 1. AdaSRoF is an
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TABLE I

DESCRIPTION OF THE EXPERIMENTAL DATA SETS

internal oversampling-based ensemble method, which reduces
the imbalance ratio (IR) in each iteration and generates
artificial instances during each subset construction. Suppose
there are L classes in the data set S and the sample size
of the i th class is Ni . The classes of S are sorted in the
descending order according to their sample sizes Ni . Then,
NL is assumed as the number of the smallest class L. The
weight value W for each instance of S is initialized as 1/N .
In each iteration t , the first set is produced by performing a
sampling (with replacement) according to W on each class
from the original data set, and the second set is generated
by the SMOTE algorithm. During the data construction, for
the class c (2 � c � L), a resampling rate β% is adopted to
define the sample sizes of both sampled instances and artificial
instances as we aforementioned in Section II-A. A diversity
balanced data set St is produced by combining all the sampled
instances and the artificially generated instances. In the next
phase, the feature space rotation is performed on the balanced
data set St , as in the traditional RoF method, to obtain the
final training data set S′t . Then, a classifier ζt is trained on the
data S′t . The weight value W of each training instance is then
recalculated and the resampling rate β% is also updated. These
processes are repeated until the maximum iteration number is
reached. The results output from a series of classifiers are
finally fused by a majority vote method.

III. EXPERIMENTAL STUDY

A. Experiment Settings
In order to demonstrate the advantages of the proposed

AdaSRoF, three popular methods, support vector machine
(SVM), random forest (RF) [20], and traditional RoF [17],
are employed as comparisons. This experiment utilizes the
classification and regression tree (CART) as the baseline
learner and all ensembles consist of 30 decision tree classifiers.
The parameter K is set to 30 for both the traditional RoF and
the proposed method. The range of sampling parameter a is
set from 10% to 100%. All the presented results are averaged
over ten independent runs of the algorithm.

B. Evaluation Methods

The experiments are first carried out using five different
comparative measures including the average accuracy (AA),

OA, F-measure, and Gmean and minimum Recall. The ensem-
ble diversity, presented in [9], and an important nonparametric
pair-wise test named McNemar’s test [21] are also used to
compare the performances of AdaSRoF and other models
in terms of the diversity improvement and the statistical
significance. The computing times of all the algorithms are
given.

C. Data Sets

To assess the effectiveness of the proposed AdaSRoF,
the experiments are performed on two publicly available
hyperspectral images. The first image is Pavia University,
whose spatial dimensions is 610 ∗ 340 pixels with 103 spectral
channels and a spatial resolution of 1.3 m per pixel. Its ground
reference data consist of nine classes. The second image is
Indian Pines, which is with the size of 145 ∗ 145 pixels,
200 spectral channels, and a spatial resolution of 20 m per
pixel. Its ground reference data contain 16 mutually exclusive
classes.

For a better investigation of the behavior of the proposed
AdaSRoF for the multiclass imbalanced hyperspectral image
classification, the data sets of different IRs are utilized in the
experimental study. For data Pavia University, 3% of the
reference data are selected randomly to construct the training
set and the last 97% instances construct the test set. For
data Indian Pines, 10% (case 1), 20% (case 2), and 30%
(case 3) of original reference data are sampled randomly
without replacement to construct training sets, respectively.
All the unselected instances compose the corresponding test
sets. We note that for the two smallest classes of the data
Indian Pines, only half of their instances are sampled randomly
without replacement from the original data to construct the
training sets. The IR of the training set is calculated by
N1/NL . Hence, the IRs of the four data sets are 19.96,
24.50, 49.10, and 73.60, respectively. More details are given
in Table I.

D. Results and Analysis

The results obtained in the experiments according to AA,
OA, F-measure, and Gmean and minimum Recall values are
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TABLE II

CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY IMAGE, AND INDIAN PINES IMAGE WITH DIFFERENT IRS,
RESPECTIVELY, OBTAINED BY SVM, RF, ROF, AND THE PROPOSED ADASROF METHODS

Fig. 1. Classification maps of the hyperspectral image Pavia University obtained by (a) ground truth, (b) SVM, (c) RF, (d) RoF, and the proposed (e) AdaSRoF,
respectively.

exhibited in Table II for SVM, RF, traditional RoF, and
the proposed AdaSRoF on the four imbalanced multiclass
hyperspectral data sets. The best result in each data set for
each performance measure is highlighted in bold font. The
results show that the traditional RoF focuses on classifying the
majority classes but sacrifices the accuracies of the minority
classes. When the IR increases (cases 3 and 4), the recognition
of the minority classes are ignored by RoF completely. In
addition, different from the conclusion of the most existing
literature, SVM and RF statistically outperform the traditional
RoF for hyperspectral data classification in the imbalance case.
The best statistical results are always achieved by AdaSRoF.
The proposed method is effective for not only the classification
of the minority classes but also the improvement of the OA.
With respect to SVM, RF, and RoF, the proposed method gets
about 7%, 16%, and 32% improvements in terms of AA, and
over 5%, 10%, and 12% increases in terms of OA. Moreover,
the results of F-measure, Gmean, and minimum Recall also
prove that AdaSRoF significantly outperforms the reference
methods for the classification of the multiclass imbalanced
hyperspectral data sets.

McNemar’s test value over 1.96 (p < 0.05) means that
there is a significant difference between two algorithms.
Table III presents the McNemar’s test results for the significant
evaluation of the proposed AdaSRoF with respect to other
methods on the four imbalanced data sets. All the values given
in Table III are greater than 1.96, i.e., when compared to SVM,
RF, and traditional RoF, the performance increase achieved
by the proposed method is significant. The diversity results of
all the methods are exhibited in Table IV. This table shows
that the differentiated sampling strategy is effective to increase
the diversity of the RoF ensemble system and improves its
performance. Moreover, the analysis results here are consistent
with those in Table II, i.e., the proposed AdaSRoF has the
best results among the four methods. In addition, some feature
extraction approaches, such as singular spectral analysis and
sparse representation, have great performance in hyperspectral
data classification. Hence, it is interesting to combine those
feature level methods with the proposed methods to further
increase the ensemble diversity in the future work. Graphical
visualizations of the results are presented in Figs. 1 and 2.
The two figures, respectively, exhibit the classification maps
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Fig. 2. Classification maps of the hyperspectral data Indian Pines (IR of the training set: 73.6) obtained by (a) ground truth, (b) SVM, (c) RF, (d) RoF, and
the proposed (e) AdaSRoF, respectively.

TABLE III

RESULTS OF MCNEMAR’S TEST FOR THE FOUR METHODS

TABLE IV

ENSEMBLE DIVERSITIES OF THE CLASSIFIERS

obtained by different classification methods for Pavia Univer-
sity and Indian Pines (case 3, IR:73.6) images. With respect
to the SVM, RF, and traditional RoF, the proposed method
not only obtains the significant improvement of the minority
classes identification but also results in more accurate classi-
fication of the majority classes.

IV. CONCLUSION

In this letter, we have proposed an original adaptive ensem-
ble method based on SMOTE and RoF with differentiated
sampling rates (AdaSRoF) for the classification of the imbal-
anced multiclass hyperspectral data. The proposed AdaSRoF
is an internal imbalance sampling-based ensemble approach. It
increases the diversity of base classifiers via producing several
different training sets with a dynamic sampling rate β% and
decreases the risk of artificial noise in SMOTE by an adaptive
weight function. Seven evaluation measures are adopted for
model effectiveness assessment. Experimental results show
that the proposed method significantly outperforms SVM,
RF, and RoF and is effective for multiclass imbalanced data
classification.
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