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Abstract
Fusarium head blight (FHB) is a major disease that negatively affects wheat yield in China. Given that conventional
reflectance spectroscopy measurements are perpendicular to crop canopy, the identification of FHB in wheat ears with
the spectral data from the vertical angle can provide the possibility for large-scale monitoring. In this study, multi--
features were selected and constructed to realize the identification of FHB in wheat ears from the vertical angle, and the
influence of leafy and leafless samples were discussed. Firstly, the multi-features, such as band features, spectral position
features, and vegetation indices for the leafy and leafless samples, were used to evaluate the ability to identify FHB, and
correlation analysis was performed to select the effective features. In order to further reduce redundancy and enhance the
separation capability of features, these candidate features were categorized into different feature sets based on Fisher
score values. Then, the support vector machine (SVM) algorithm was used to construct the FHB identification model
based on different feature sets of leafy and leafless samples. The optimal multi-features and the best classification
accuracy were finally determined. The results were showed in the following: (1) The overall accuracies and Kappa
coefficients of leafy samples could reach up to 65% and 0.28, respectively, whereas the values for the leafless samples
could reach 81% and 0.63 in this model; (2) the optimal multi-features had great potential in identifying FHB-infected
wheat ears; and (3) the presence of leaves would reduce the model’s identification capability and adversely affected the
identification of FHB in wheat ears. These results provide realistic theoretical references for large-scale FHB monitoring,
which are conducive to the selective harvest of wheat.
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Introduction

Fusarium head blight (FHB), which is caused by Fusarium
graminearum Schwabe, is one of the primary diseases that
negatively affect wheat production in China (Goswami and
Kistler 2004). FHB occurs seriously in the Yangtze River
and Huai River basin, China (McBeath et al. 2010). The dis-
ease has also been found in and around the YellowRiver basin
and is spreading northward gradually (Zhang et al. 2014). The
yield and quality of FHB-infected wheat will be reduced, and
a variety of mycotoxins, such as deoxynivalenol (DON) and
zearalenone (ZEN), may be produced, which seriously harm
the health of animals and humans and cause food safety prob-
lems (Li et al. 2018). Therefore, the accurate identification of
FHB is important for disease prevention and control.

Various methods have been applied to identify wheat FHB.
The incidence of wheat FHB in the field can be directly
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observed through visual interpretation traditionally. However,
this method is time-consuming and laborious.What is more, it
is easily affected by subjective consciousness. The morphol-
ogy and internal physiological structure of wheat will changed
after fungus infection, which can be effectively reflected by
the spectral reflectance of diseased plant tissues (Kuenzer and
Knauer 2013). Therefore, many scholars used hyperspectral
imaging technology to identify FHB in wheat ears. For exam-
ple, Zhang et al. (2019a) proposed a special FHB classifica-
tion index combining spectral bands of 417, 539, and 668 nm
based on hyperspectral microscopic images of the side of
wheat ears, and proved that this index could be successfully
applied to the classification of wheat hyperspectral image
data. Jin et al. (2018) applied the convolutional neural network
classification algorithm to hyperspectral image pixels and
successfully classified healthy and infected wheat ears.
Mahlein et al. (2019) calculated six spectral vegetation indices
based on hyperspectral images of the side of wheat ears to
investigate the potential of specific bands in detecting FHB;
the results showed that pigment-specific simple ratio (PSSRa
and PSSRb) had the highest sensitivity for early detection of
Fusarium infection. These studies have made progress in the
use of hyperspectral imaging technology to detect wheat ears.
However, hyperspectral imaging technology consumes large
amounts of memory and transmission bandwidth, resulting in
a significant increase in computing costs (Jin et al. 2018).
Compared with hyperspectral imaging technology, non-
imaging spectrometer can detect spectral information of crops
with low cost and fast speed and can reduce the time of data
pretreatment (Wang et al. 2011). Several scholars used non-
imaging hyperspectral instruments for wheat FHB detection.
Ma et al. (2020) used a ground surface spectrometer to mea-
sure the spectra from the side angle of wheat ears and carried
out wavelet transform combined with Fisher linear analysis to
establish a wheat FHB identification model with an overall
accuracy higher than 88%. Based on the spectra measured
by Analytical Spectral Devices (ASD) spectrometer, Huang
et al. (2019a) extracted the derivative and absorption features
and vegetation indices from the side angle of winter wheat
ears, and then these features were used to construct effective
identification models of disease severity under the combina-
tion of Fisher’s linear discriminant analysis and support vector
machine (SVM). These studies indicated that non-imaging
hyperspectral technology had great potential in the identifica-
tion of FHB in wheat ears.

In addition, we found that the spectral features used for
FHB identification in the above studies were all derived from
the combination or transformation of the spectral reflectance
collected from the side angle of wheat ears. This spectral mea-
surement method had been applied to the identification of
wheat FHB in the field by relying on large machines or tool
carriers, such as specific tractors (Whetton et al. 2018;
Dammer et al. 2011). However, it caused damage to wheat.

Moreover, in practical large-scale satellite remote sensing-
scale applications, collecting side spectral information of
wheat is difficult. The sensors generally capture the wheat
canopy vertically, which means that the collected spectra
mainly reflect the information on the top of wheat ears. The
features extracted from the side angle of wheat ears cannot
provide real reference at the canopy, field, or large regional
scales. Application to precision agriculture may lead to mis-
classification of healthy and diseased wheat, resulting in waste
of pesticide spraying and environmental pollution.
Summarizing and analyzing the proprietary spectral features
of wheat ears from the vertical angle can provide a powerful
basis for the large-scale identification of wheat FHB in the
future. Wheat FHB mainly occurs in wheat ears, so scholars
only study diseases occurring at the ear level of wheat.
However, in addition to wheat ears, sensors can also detect
the spectral information of wheat leaves. As an important part
of wheat, the information on wheat leaves may interfere with
FHB identification. Few included wheat leaves in previous
studies on wheat ear scales. Therefore, the assessment of iden-
tification results of wheat samples with and without leaves in
this model is necessary.

In our study, we attempted to establish a method for iden-
tifying FHB in wheat ears from the vertical angle with non-
imaging spectral reflectance to provide references for large-
scale vertical observation. The influence of wheat leaves pres-
ence on model accuracy was evaluated to provide detailed
prior knowledge for the improvement of model accuracy in
the later stage. The purposes of this paper was listed in the
following: (1) to determine the optimal features for identifica-
tion of wheat FHB at the vertical angle; (2) to evaluate the
efficiencies of FHB identification model; and (3) to compare
and analyze the influence of wheat leaves on the model.
Figure 1 presents the workflow of the study.

Materials and methods

Study area and data acquisition

Experimental area

Wheat FHB is a typical climatic disease. The high temperature
and humidity during the heading and flowering periods are
conducive to disease outbreaks (Chen et al. 2017).
According to the climate history data of Anhui Climate
Center, the average temperature in Lujiang County in April
2019 was 14–23 °C, the highest temperature in early May was
28 °C, and the number of rainy days in April was 11 days.
Sufficient moisture and suitable temperatures provide suitable
climatic conditions for FHB occurrence. The present experi-
ment was conducted in a test field in Guohe Town (31° 29′N,
117° 13′ E), Lujiang County, Anhui Province (Fig. 2). The
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wheat was at the grain-filling period. Data were collected on
May 3 and May 8, 2019. The abundant Fusarium oxysporum
resulted in the serious occurrence of FHB in this test field.

Spectral measurement

The hyperspectral data of wheat ears was collected using the
ASD FieldSpec Pro spectrometer (Analytical Spectral
Devices, Inc., Boulder, CO, USA) on May 3 and 8, 2019.
The spectral sampling interval was 1 nm, the spectral range
was from 350 to 2500 nm for the spectrometer, and the

spectral resolution was 3 nm in the 350–1000-nm range and
10 nm in the 1000–2500-nm range. In the experiment, a 1 m ×
1 m black cloth was used to reduce the interference of other
background factors such as soil. The field of view of the spec-
trometer was 25°, and all the wheat ears were measured at a
height of 0.5 m above the black cloth. To explore the influence
of leaves on the results of FHB identification, we considered
the flag leaf of wheat as a representative and performed spec-
tral measurements on leaf and leafless samples (Fig. 3).

Following the spectral measurement method described by
Huang et al. (2019a), a small hole was cut at the center of the

Fig. 1 Workflow of this study
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black cloth, and a single wheat sample was randomly selected
at each experimental point in the study area, and leaves of the
wheat sample were retained. We inserted the wheat sample
vertically into the center of the black cloth and ensured that the
ear and leaves were above the black cloth, and then put our
hands under the black cloth to fix the wheat sample. A probe
was vertically placed on top of the ear for spectral

measurement. After the measurement of the leaf sample, we
removed the sample leaves and placed the probe on the top of
the wheat ear for spectral measurement. Thus, two sets of
spectral data were collected for the same wheat sample. All
spectral measurements were obtained at 10:00 a.m.–14:00
p.m. (local time) under clear and cloudless weather condi-
tions. Each wheat sample with or without leaves was

Fig. 2 Location of the study site

Fig. 3 Leafy (a) and leafless
samples (b) for spectral
measurement
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measured 10 times, and the average value was considered the
final spectrum. A 40 cm × 40 cmBaSO4 calibration panel was
used for spectral correction before every measurement. The
spectral reflectance was calculated using the following formu-
la (Huang et al., 2019b):

Rm ¼ DNm

DNb
� Rb ð1Þ

where Rm is the target reflectance, DNm is the gray value of the
target sample measured using a spectrometer, DNb is the gray
value of the calibration panel, and Rb is the standard reflec-
tance of the calibration panel.

Determination of disease severity

According to the Rules for Monitoring and Forecast of Wheat
Head Blight (Fusarium graminearum Schw./Gibberella zeae
(Schw.) Petch) published in 2011 (GB/T 15796-2011), the
disease severity of each wheat ear is determined by the infec-
tion ratio of diseased kernels to the total number of kernels
(Ma et al. 2020). Herein, the disease infestation conditions of
each wheat sample were reorganized into two classes for iden-
tification analysis: healthy (infection ratio is 0) and FHB in-
fected (0 < infection ratio ≤ 100%). A total of 130 samples
were selected, and the number of diseased kernels of each
wheat sample was recorded based on visual interpretation.
This study included 47 healthy and 83 infected samples.

Selection and processing of spectral features

Hyperspectral remote sensing can generate hundreds or thou-
sands of narrow, continuous spectral bands, which may pro-
vide important additional information. The analysis of a single
feature is often insufficient to explore such a wealth of infor-
mation. It is significant to prevent and control FHB by sys-
tematic summarizing and analyzing the performance of differ-
ent spectral features of hyperspectral remote sensing data in
FHB recognition. However, hyperspectral data is consider-
ably complicated than multispectral data, and most adjacent
bands are redundant and often highly correlated (Thenkabail
et al. 2004). Therefore, the best spectral features obtained from
hyperspectral data must be determined to accurately identify
FHB. The spectral features employed in this research mainly
included band features, spectral position features, and vegeta-
tion indices. Based on the spectrum or mechanism changes
caused by wheat under disease stress, the features commonly
used in the identification of crop diseases were summarized,
and the candidate spectral features were obtained through cor-
relation analysis. We obtained the final feature sets for model
construction by further calculation of the candidate spectral
features.

Selection of candidate spectral features

First-derivative spectra were studied to select the waveband
features in our study. Spectral derivative is one of the most
important techniques in analyzing and processing
hyperspectral remote sensing data. Compared with the origi-
nal band, the spectra after differential transformation eliminat-
ed the background effect in a certain extent and highlighted
the required information. After sorting the wavebands in a
descending order based on the correlation between the first-
derivative spectral reflectance and disease severity, the top 10
wavebands in leafy and leafless conditions were selected as
the candidate band features. The first-derivative spectra were
calculated using the following equation (Huang et al. 2019b):

R0 λið Þ ¼ R λiþ1ð Þ−R λi−1ð Þ
2Δλ

ð2Þ

where R′(λi) is the first-derivative reflectance of band i;
R(λi+1) and R(λi-1) are the spectral reflectance of wavebands
i − 1 and i + 1, respectively; and Δλ is the wavelength of
adjacent wavebands.

After wheat is infected with FHB, the shrinkage of ear
tissue and the reduction of chlorophyll and water content
cause changes in the absorption position and spectral reflec-
tance of the red band (Jing et al. 2010). Continuum removal is
an effective method for extracting feature information on the
absorption valley of hyperspectral data. This method can en-
hance the spectral features in the red-absorption valley and
highlight the differences among spectral curves (Fu et al.
2013). Herein, continuum removal was performed on the
spectrum within 550–780 nm and used for the selection of
absorption feature parameters. As shown in Fig. 4, the
continuum-removal reflectance can be obtained by dividing
the spectral reflectance of each waveband in the absorption
position by the continuum line value at the corresponding
wavelength. Three parameters, namely, depth, area, and nor-
malized depth (ND), were proposed as the position features.

The depth feature was computed as follows:

depth ¼ 1−R
0
i λminð Þ ¼ 1−

Ri λminð Þ
Rc λminð Þ ð3Þ

where Ri(λmin) is the minimum reflectance value within 550–
780 nm, Rc(λmin) is the continuum line value of the band with
minimum reflectance value, and Ri′(λmin) represents the cor-
responding continuum-removal reflectance value.

The absorption area is defined as the space enclosed be-
tween the reflectance curve of bands and the continuum line.
This feature was calculated as follows:

area ¼ ∫λ2λ1 Rc λð Þ−Ri λð Þð Þdλ ð4Þ
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where Rc(λ) and Ri(λ) are the continuum line and spectral
reflectance values of band λ, respectively. Variables λ1 and
λ2 are the start and end positions of the wavelength, respec-
tively. Herein, λ1 was 550 nm, and λ2 was 780 nm.

ND can be expressed as the ratio of maximum depth index
to absorption area index. ND was computed as follows:

ND ¼ depth

area
ð5Þ

Wheat suffered from “green loss” under FHB stress, and
the position of the green peak shifted to the red light direction
(“red shift”). The three edges of vegetation spectra (“blue
edge,” “yellow edge,” and “red edge”) exhibited varying de-
grees of changes from the viewpoint of absorption and reflec-
tion characteristics, all of which can reflect vegetation growth
(Huang et al. 2018). Aside from depth, area, and ND, 11
derivative features (Table 1) obtained by combining and
transforming the spectral derivative values of the blue (490–

530 nm), yellow (550–582 nm), and red edges (670–737 nm)
and green peak (510–560 nm) were also considered as posi-
tion features. By calculating the correlation between these 14
position features and disease severity, the features with corre-
lation coefficient greater than 0.6 (|R| > 0.6) and significantly
(P-value < 0.001) correlated with disease severity were select-
ed as the candidate position features.

Different vegetation indices have been reported in the
literature and are widely used in hyperspectral remote
sensing monitoring of crop diseases (Huang et al.
2018; Yang et al. 2007; Bravo et al. 2003). Herein,
18 vegetation indices commonly used for crop disease
monitoring were selected (Table 2). By calculating the
correlation between these 18 vegetation indices and dis-
ease severity, the features with correlation coefficient
greater than 0.6 (|R| > 0.6) and significantly (P-value <
0.001) correlated with disease severity were selected as
the candidate vegetation indices.
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Table 1 Definition of the 11
spectral position features Feature Definition

db Maximum first-derivative value of blue edge

dy Maximum first-derivative value of yellow edge

Dr Maximum first-derivative value of red edge

sdb Sum of the first-derivative values of blue edge

sdy Sum of the first-derivative values of yellow edge

sdr Sum of the first-derivative values of red edge

sdg Sum of the first-derivative values of green peak

sdg/sdb Ratio of sdg to sdb

sdy/sdb Ratio of sdy to sdb

(sdr − sdy)/(sdr + sdy) Normalized ratio of sdr to sdy

(sdg − sdb)/(sdg + sdb) Normalized ratio of sdg to sdb
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Further processing of candidate spectral features

The correlation coefficients between spectral features and dis-
ease severity can connect the features with the disease infes-
tation of wheat ears, and the threshold setting can reduce the
redundancy among these features. However, in addition to
correlation, the capabilities of features to classify and identify
categories are important factors that affect model accuracy.
The Fisher score (F-score) of features is an excellent indicator
that can represent their classification capability based on the
ratio of the sum of interclass distances of features to the sum of
intraclass distances (Lai and He 2017). The intraclass distance
of features decreased, whereas the interclass distance in-
creased as the proportion increased, thereby enhancing the
class separation capability of features, that is, the larger the
F-score, the better the effect on class recognition. The F-score
values of the selected candidate features were further calculat-
ed. F-score can be defined as follows:

F−score ¼
xi

1ð Þ−xi
� �2

þ xi
2ð Þ−xi

� �2

1

n1−1
∑n1

k¼1 xk;i 1ð Þ−xi 1ð Þ
� �2

þ 1

n2−1
∑n2

k¼1 xk;i 2ð Þ−xi 2ð Þ
� �2

ð6Þ

where xi is the average value of feature i, xi 1ð Þ and xi 2ð Þ

represent the average of feature i in the class 1 and 2 datasets,
respectively, n1 and n2 correspond to the number of samples
corresponding to classes 1 and 2, respectively, and xk, i

(1) and
xk, i

(2) denote the value of feature i at the kth sample point in
classes 1 and 2, respectively.

Model construction

SVM was used to identify FHB in our study. As a traditional
supervision model, SVM aims to identify a hyperplane that
can correctly divide the feature space of data, and the support
vector refers to the training sample point at the edge of the
interval region (Ghaddar and Naoum-Sawaya 2018). The in-
put vector can be mapped to a high-dimensional eigenvector
space by kernel function, and the optimal classification sur-
face can be constructed in this eigenspace, so as to maximize
the sum of the distance between heterogeneous samples and
hyperplane, and finally achieve the goal of accurate classifi-
cation. Herein, the most common radial basis function (RBF)
was used as the kernel function for model construction, and
cross-validation was applied to identify the best parameters.
The RBF is defined as follows:

K xi; xð Þ ¼ exp −
x−xik k
2σ2

� �
ð7Þ

Table 2 Preliminary selection of vegetation indices

Feature Definition Formula Reference

SIPI Structure Insensitive Pigment Index (R800 − R445)/(R800 − R680) Devadas et al. 2009

PRI Photochemical Reflectance Index (R570 + R531)/(R570 − R531) Gamon et al. 1997

TCARI Transformed Chlorophyll Absorption and Reflectance
Index

3×[(R700 − R670)−0.2×(R700 − R550)×
(R700/R670)]

Haboudane et al. 2002

NDVI Normalized Difference Vegetation Index (R830 − R675)/(R830 + R675) Roy et al. 2016

NPCI Normalized Pigment Chlorophyll Index (R680 − R430)/(R680 + R430) Peñuelas et al. 1994

PSRI Plant Senescence Reflectance Index (R680 − R500)/R750 Merzlyak et al. 1999

PHRI Physiological Reflectance Index (R550 − R531)/(R550 + R531) Gamon et al. 1992

ARI Anthocyanin Reflectance Index (R550)
−1 −(R700)

−1 Gitelson et al. 2001

MSR Modified Simple Ratio (R800/R670–1)/sqrt(R800/R670 +1) Haboudane et al. 2004

MCARI Modified Chlorophyll Absorption Reflectance Index [(R700 − R670)−0.2(R700 − R550)]×(R700/R670) Daughtry et al. 2000

TVI Triangular Vegetation Index 0.5[120(R750 − R550)−200(R670−R550)] Broge and Mortensen
2002

NRI Nitrogen Reflectance Index (R570 − R670)/(R570 + R670) Filella et al. 1995

RVSI Ratio Vegetation Stress Index (R714 + R752)/2− R733 Davoud et al. 2014

GI Greenness Index R554/R677 Zarco-Tejada et al. 2005

GNDVI Greenness Normalized Difference Vegetation Index (R747 − R537)/(R747 + R537) Thenkabail et al. 2000

NBNDVI Narrow-Band Normalized Difference Vegetation Index (R850 − R680)/(R850 + R680) Filella et al. 1995

NDVI705 Normalized Difference Vegetation
Index of Red Edge

(R750 − R705)/(R750 + R705) Yang et al. 2016

MSR705 Modified Simple Ratio of Red Edge (R750 − R445)/(R705 + R445) Wang et al. 2014
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where σ is the kernel parameter.
By defining the kernel function, the decision function can

be rewritten as follows:

f xð Þ ¼ Sgn ∑l
i¼1yiαiK xi; xð Þ þ b

� � ð8Þ

Among the 130 samples, 87 of them were used as training
samples for model construction, and the others were used as
test samples for model validation. Based on SVM algorithm,
our study was conducted as follows:

& The candidate features were ranked in descending order
based on their F-score values. First, the first feature was
used as input variable for model construction. Then, the
first two features were used as input variables for model
construction. Next, the first three features were used as
input variables for model construction until all features
were inputted into the model. The model with the highest
accuracy was the optimal model.

& The above steps were repeated from two aspects—leafy
and leafless—to analyze the influence of leaves on the
model.

& The producer’s accuracy, user’s accuracy, overall accura-
cy, and Kappa coefficient were used as indicators to eval-
uate the identification capability of the model.

Results

Spectral reflectance of wheat ears

Given that the spectrum after 1000 nm is greatly affected by
external noise, this study mainly analyzes the spectrum within
the band range of 350–1000 nm. As shown in Fig. 5a, the
spectral reflectance of healthy and infected wheat is signifi-
cantly different. When wheat is infected by FHB, the spectral
reflectance in the visible region increases, while the reflec-
tance in the near-infrared region decreases. The reason for this
phenomenon is that the internal pigment and water content of
the wheat are affected (Zhang et al. 2012). In Fig. 5b, we can
see that the spectral difference between leafy and leafless
wheat is more obvious in the near-infrared region, indicating
that the reflectance in the near-infrared region is greatly affect-
ed by the leaves.

Candidate feature selection by correlation analysis

Band features

The spectral reflectance data of the wheat ears and their first-
derivative spectra correlated with disease severity (Fig. 6).
Figure 6 a showed the correlation results between the

waveband reflectance and disease severity, whereas Fig. 6b
displayed the correlation results between first-derivative re-
flectance and disease severity. The correlation value in Fig.
6a was low, and the maximum value did not exceed 0.7. After
the first derivative of reflectance, the maximum correlation
coefficients reached 0.79 and 0.77, respectively, under leafy
and leafless conditions, indicating that the first derivative
could improve the correlation between spectral reflectance
and disease severity. Table 3 showed the first 10 bands with
an extremely significantly correlation (P-value < 0.001) be-
tween the first-derivative reflectance and disease severity for
leafy and leafless samples. These 20 bands were considered
candidate band features.

Spectral position features

The position features primarily included 3 continuum and 11
derivative features. Correlation analysis was performed on the
14 features and disease severity (Table 4). The features that
were significantly correlated with disease severity (P-value <
0.001) for the leafy samples primarily included two continu-
ous features, namely, depth and DN, and three derivative fea-
tures, including sdy, sdr, and (sdr − sdy)/(sdr + sdy). However,
only the correlation coefficient between depth and disease
severity was greater than 0.6 (|R| > 0.6). Seven position fea-
tures for leafless samples, namely, depth, DN, dy, sdy, sdr,
sdy/sdb, and (sdr − sdy)/(sdr + sdy), were significantly corre-
lated (P-value < 0.001) with disease severity, and the correla-
tion coefficients of depth, sdy, sdy/sdb, and (sdr − sdy)/(sdr +
sdy) were greater than 0.6 (|R| > 0.6). The depth for leafy sam-
ples and depth, sdy, sdy/sdb, and (sdr − sdy)/(sdr + sdy) for
leafless samples were considered candidate position features.

Vegetation indices

Table 5 listed the correlation between the 18 vegetation indi-
ces and the severity of FHB-infected wheat. SIPI, TCARI,
NDVI, NPCI, PSRI, MSR, NRI, GI, NBNDVI, NDVI705,
and MSR705 significantly correlated (P-value < 0.001) with
disease severity, where SIPI, TCARI, NPCI, and PSRI
showed positive correlation coefficients, whereas the rest
showed negative correlations. The sensitive vegetation indices
(|R| > 0.6) for leafy samples were SIPI, NDVI, PSRI, MSR,
NBNDVI, and NDVI705, whereas those for the leafless sam-
ples were SIPI, NDVI, NPCI, PSRI, MSR, and NDVI705;
these sensitive vegetation indices were considered candidate
features.

F-score values of candidate features

According to the “Candidate feature selection by correlation
analysis” section, the candidate features for leafy samples
were 590, 594, 597, 598, 599, 604, 625, 626, 629, and
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630 nm; depth; and SIPI, NDVI, PSRI, MSR, NBNDVI, and
NDVI705. The candidate features for leafy samples were 561,
562, 563, 581, 582, 585, 590, 597, 598, and 599 nm; depth,
sdy, sdy/sdb, and (sdr − sdy)/(sdr + sdy); and SIPI, NDVI,
NPCI, PSRI, MSR, NBNDVI, and NDVI705. The F-score
values of these 38 candidate features were calculated, and
the results are shown in Fig. 7.

Best feature sets for model classification

The optimal feature sets for FHB identification of wheat ears
with vertical angle were determined. Given the F-score calcu-
lation results in Fig. 7, the leafy and leafless features were
arranged in descending order, and they were individually
superimposed to form different input variable sets for model
construction. We summarized the identification results of the
optimal feature sets for FHB in wheat ears (Table 6). For
leafless samples, when the input variables were the top nine
features, namely, 561, 562, 581, 585, 597, and 598 nm; depth;
PSRI; and (sdr − sdy)/(sdr + sdy), the constructed model

achieved the strongest identification capability. For the leafy
samples, the overall accuracy of the model based on 590, 597,
598, 599, and 626 nm and depth was highest. These features
with strong separation capability could reduce the operation
time of the model, decreased the redundancy among features,
and improved the model accuracy. As can be seen from
Table 6, the optimal feature sets of the leafy and leafless sam-
ples produced overall accuracies of 65% and 81%, and the
Kappa coefficients of 0.28 and 0.63, respectively, indicating
that the selected features performed well in identifying healthy
and FHB-infected wheat ears from the vertical angle. In addi-
tion, Table 6 revealed that the overall accuracy and Kappa
coefficient of the leafy model were decreased by 16% and
0.35 than those of the leafless model, respectively. The pro-
ducer’s and user’s accuracies for the leafless samples reached
94% and 95%, respectively, whereas those of the leafy model
only reached 67% (producer’s accuracy) and 75% (user’s ac-
curacy). Tables 3, 4, and 5 showed that the correlation be-
tween most features of the leafless samples and disease sever-
ity were higher than that of leafy samples. The F-score values
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of the features of leafless samples in Fig. 7 were also higher
than those of the features of leafy samples on the whole. The
above results illustrated that features of leafless samples were
more remarkable in response to FHB identification than those
of leafy samples, proving that the presence of leaves will re-
duce the model’s capability to identify FHB.

Discussion

The selection of multi-features

The band features, spectral position features, and vegetation
indices were selected to evaluate the severity of wheat FHB in
our study. In recent decades, scholars have successively

proposed and improved many methods to extract the spectral
features of spectral information and indicated that spectral
features could be basically divided into three categories. (i)
Waveband features: The band of a specific part in the spectral
data can be used as the basis for judging vegetation suffering
from disease stress. Kobayashi et al. (2001) found that the
spectral reflectance in the ranges of 430–530, 580–680, and
1480–2000 nm is more sensitive to rice panicle blast at the
canopy or leaf scale. Graeff et al. (2006) analyzed the spectra
of wheat leaves infected with powdery mildew and take-all
disease and found that the 490, 510, 516, 540, 780, and 1300-
nm bands would have a strong spectral response to the occur-
rence of the diseases. (ii) Spectral position features: The ab-
sorption and reflectance features that characterize
hyperspectral data are also related to the specific physical
and chemical characteristics of vegetation (Li et al. 2014).
Huang et al. (2004) observed that the absorption depth and
area could be used to establish remarkable correlation with the
severity of wheat stripe rust after continuum removal within
540–740 nm. The “three edges” features are often used as key
indicators to explore the spectral changes of crops under dis-
ease stress (Wang et al. 2011). (iii) Vegetation indices:
Vegetation indices are special expressions that mathematically
combine different wavebands, and they can enhance vegeta-
tion information and minimize non-vegetation information si-
multaneously (Li et al. 2014). Therefore, band features, spec-
tral position features, and vegetation indices were selected as
our research objects in our study.

The determination of model input variables

Figure 6 clearly showed the candidate features and F-score
calculation results obtained after correlation analysis. The

Table 4 Correlation between
position features and disease
severity

Features Leafy Leafless

R R2 P-value R R2 P-value

depth −0.688 0.473 0.000 −0.734 0.539 0.000

area 0.137 0.019 0.060 0.130 0.017 0.070

DN −0.438 0.192 0.000 −0.478 0.229 0.000

db −0.117 0.014 0.093 −0.219 0.048 0.006

dy 0.269 0.072 0.001 0.337 0.114 0.000

dr 0.222 0.049 0.006 0.202 0.041 0.010

sdb −0.125 0.016 0.078 −0.215 0.046 0.007

sdy 0.566 0.320 0.000 0.724 0.524 0.000

sdr 0.295 0.087 0.000 0.288 0.083 0.000

sdg −0.055 0.003 0.267 −0.160 0.026 0.034

sdg/sdb 0.027 0.001 0.381 −0.063 0.004 0.240

sdy/sdb 0.136 0.019 0.061 0.657 0.432 0.000

(sdr−sdy)/(sdr+sdy) −0.578 0.334 0.000 −0.725 0.526 0.000

(sdg−sdb)/(sdg+sdb) 0.006 0.000 0.474 −0.063 0.004 0.238

Table 3 Correlation between the first-derivative reflectance of the first
20 bands and disease severity

Leafy Leafless

Wavebands R R2 Wavebands R R2

590*** 0.748 0.559 561*** 0.738 0.544

594*** 0.707 0.500 562*** 0.755 0.570

597*** 0.750 0.562 563*** 0.722 0.521

598*** 0.793 0.628 581*** 0.748 0.559

599*** 0.759 0.576 582*** 0.720 0.519

604*** 0.698 0.487 585*** 0.729 0.532

625*** 0.684 0.468 590*** 0.737 0.543

626*** 0.690 0.477 597*** 0.743 0.552

629*** 0.710 0.504 598*** 0.766 0.587

630*** 0.710 0.504 599*** 0.734 0.538

*** indicates the significant difference at 0.999 confidence level
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candidate features of bands in the regions of 560–600 and
590–630 nm and the depth are located near the “green peak”
and “red valley” in the visible region. The spectral reflectance
in the visible region is mainly affected by pigments, especially
chlorophyll content. The content of plant pigments will chang-
es as crops are invaded by diseases, making the absorption
valley in the visible region inconspicuous, and “green peak”
decreases and flattens. This change provides a strong theoret-
ical basis for identifying wheat FHB (Zhang et al. 2002). The
candidate features, namely, sdy, sdy/sdb, and (sdr − sdy)/(sdr
+ sdy), are the parameters of “red edge,” “yellow edge,” and

“blue edge,” which can well reflect the spectral characteristics
of green vegetation and are sensitive to changes in chloro-
phyll, water content, and other factors (Jiang et al. 2007).
The vegetation indices of SIPI, NDVI, NPCI, PSRI, MSR,
NBNDVI, and NDVI705 also produce strong correlation.
The selected candidate features can well represent the changes
in wheat after FHB infection, but the number of features is still
large. Furthermore, because the band features being spaced
close to each other, redundancy may still exist. By further
screening the features based on the feature separation capabil-
ity, the model achieved the highest classification accuracy
with the least features and its performance was improved.

Analysis of classification results

As can be seen from Table 6, the optimal identification accu-
racy of FHB was 81% from the vertical angle in this study.
Under the same field conditions, Huang et al. (2019a) had
identified wheat FHB from multiple angles, and the highest
precision of the model under the vertical angle was only
68.8%, which was nearly 12% lower than our maximum re-
sult. These results also proved the effectiveness of our re-
search method. In addition, Huang et al. (2019) also proved
that the identification accuracy of FHB from the side was the
highest at 88.6% and he concluded that the side of wheat ears
was the best angle to identify FHB, because it contained more
useful spectral information. However, this method of identi-
fying wheat FHB from the side could not be applied to prac-
tice accurately. Our study simply analyzed the spectral chang-
es of wheat after disease from the vertical angle and found
effective features which was suitable for identification of
FHB and provided guidance for larger scale FHB research.
Actually, the field environment is relatively complicated with
the effect of multiple factors such as temperature, wind, and
multiple heads. Future studies need to take these factors into
consideration.

Table 5 Correlation between vegetation indices and disease severity

Features Leafy Leafless

R R2 P-value R R2 P-value

SIPI 0.718 0.516 0.000 0.720 0.518 0.000

PRI −0.097 0.009 0.136 −0.147 0.022 0.048

TCARI 0.382 0.146 0.000 0.416 0.173 0.000

NDVI −0.651 0.423 0.000 −0.655 0.429 0.000

NPCI 0.558 0.311 0.000 0.612 0.375 0.000

PSRI 0.694 0.482 0.000 0.751 0.564 0.000

PHRI −0.148 0.022 0.047 −0.247 0.061 0.002

API −0.126 0.016 0.076 −0.147 0.022 0.047

MSR −0.601 0.361 0.000 −0.636 0.405 0.000

MCARI 0.185 0.034 0.018 0.175 0.031 0.023

TVI 0.227 0.051 0.005 0.219 0.048 0.006

NRI −0.346 0.120 0.000 −0.396 0.157 0.000

RVSI −0.255 0.065 0.002 −0.281 0.079 0.001

GI −0.323 0.105 0.000 −0.371 0.138 0.000

GNDVI −0.042 0.002 0.318 −0.039 0.002 0.330

NBNDVI −0.676 0.457 0.000 −0.424 0.180 0.000

NDVI705 −0.634 0.402 0.000 −0.684 0.468 0.000

MSR705 −0.295 0.087 0.000 −0.363 0.132 0.000

Fig. 7 F-score distribution of
candidate features
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Outlook and shortcomings

Our study can directly provide guidance for canopy-scale FHB
identification, and it is the first step to identify FHB on a large
regional scale by applying remote sensing technology. The se-
lected features can be further used in the identification of FHB at
the canopy scale, which has high practicability in actual precision
agriculture management. Image segmentation had been used to
extract single wheat plant in the field to accurately identify the
severity of FHB (Zhang et al., 2019b). In the future, wheat ears
and leaves can be separated to further explore the best identifi-
cationmethod for FHB applied on a large regional scale based on
the canopy images. Considering that most of the information
detected by the sensor was the leaf information on the top of
wheat, this study only selected the flag leaf as the research object.
In fact, due to different growth heights of wheat in the field,
multiple leaves on the upper part of wheat can be further consid-
ered. In addition, cultivar is also an influencing factor for disease
spectra detection (Cao et al. 2013). Alisaac et al. (2018) con-
firmed that the spectral reflectance was related to the susceptibil-
ity of wheat varieties. This result directly indicated that different
wheat varieties had different sensitive wavelengths and, thus,
varying spectral identification results. Given the complexity of
wheat varieties in the experimental field, we disregarded the
influence of different varieties on the identification of FHB in
this study. The influence ofwheat varieties on the performance of
FHB identification model should be discussed in the future.

Conclusions

This study explored the possibility of identifying FHB in wheat
ears from a vertical angle and discussed the influence of leaves
on model accuracy to provide novel insights into the further
study of FHB identification. Based on two sets of different
hyperspectral data collected vertically, correlation analysis
was performed to select the candidate spectral features, includ-
ing band features, position features, and vegetation indices. The
F-score values of the candidate features, which were divided
into different spectral sets, were calculated. The optimal spectral

feature sets for leafless samples were 561, 562, 581, 585, 597,
and 598 nm; depth; PSRI; (sdr − sdy)/(sdr + sdy) and 590, 597,
598, 599, and 626 nm; and depth for the leafy samples. SVM
algorithm was used to build the FHB identification model. The
overall accuracy of the leafy model was 65% and that of the
leafless model reached 81%. The results showed that the select-
ed features had great potential in vertical-angle FHB identifica-
tion. Compared with the leafy samples, leafless samples were
more beneficial to the identification of FHB. The above results
provide detailed prior knowledge for the identification of FHB
at the canopy or regional scale.
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