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Abstract: Quickly and accurately understanding the spatial distribution of regional rubber resources
is of great practical significance. Using the unique phenological characteristics of rubber trees derived
from remotely sensed data is a common effective method for monitoring rubber trees. However,
due to the lack of high-quality images available during the key phenological period, it is still very
difficult to apply this method in practical applications. PlanetScope data with high temporal (daily)
resolution have great advantages in acquiring high-quality images, but these images have not been
previously used to monitor rubber plantations. In this paper, multitemporal PlanetScope images
were used as data sources, and the spectral features, index features, first principal components,
and textural features of the images were comprehensively utilized. Four classification methods,
including a pixel-based random forest (RF) approach, pixel-based support vector machine (SVM)
approach, object-oriented RF approach and object-oriented SVM approach, were utilized to discuss
the feasibility of using PlanetScope data to monitor rubber forests. The results showed that the
optimal time window for monitoring rubber forests in the study area spanned from the 49th day to
the 65th day of 2019 according to the MODIS-NDVI analysis. The contribution rate of the difference in
the modified simple ratio (dMSR) feature was largest among all considered features for all pixel-based
and object-oriented methods. The object-oriented RF/SVM classification method achieved the best
classification results with an overall accuracy of 93.87% and a Kappa index of agreement (KIA) of
0.92. The highest producer’s accuracy and user’s accuracy obtained with this method were 95.18%
for rubber plantations. The results of this study show that it is feasible to use PlanetScope data to
perform rubber monitoring, thus effectively solving the problem of missing images in the optimal
rubber monitoring period; additionally, this method can be extended to other real-life applications.

Keywords: rubber; object-based; pixel-based; random forest approach; support vector machine
approach; PlanetScope images

1. Introduction

Rubber trees (Hevea brasiliensis) are important sources of natural rubber and wood
products that meet commodity production requirements. Rubber tree development in the
region of study is often affected by local government policies and the potential economic
benefits. It is crucial to conduct accurate and up-to-date monitoring and mapping of the
rubber plantation distribution to ensure the health of the rubber industry in the region of
study. Compared with traditional manual survey methods, remote sensing technologies
have the ability to survey large study areas and rapidly acquire ground object information;
these technologies have been widely used in various agricultural fields. However, the
monitoring of rubber forests based on remote sensing technology is recently new, and
extensive research is lacking. The first report about rubber mapping with remote sensing
was published in 2002 [1], and only a total of 24 documents focusing on this field were
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published through December 2020 based on searches [2] of six bibliographical databases
(Science Direct, Web of Science Core Collection, Scopus, ProQuest and Google Scholar) with
the keywords “remote sensing” and “rubber plantation”. These studies can be summarized
as follows.

In terms of the remote sensing data used, according to the spatial resolution, the remote
sensing images considered in the existing studies can be classified into four classes: low
resolution (MODIS [3]), moderate resolution (Landsat [1,4–18], PALSAR [19], ASTER [20],
IRS [21,22], THEOS [23]), high resolution (Sentinel-2 [17,24], GaoFen-1 [17]), and very
high resolution (IKONOS [25]). Single-date image information was primarily considered
when mapping rubber plantations in early studies. Considering the unique wintertime
phenological characteristics of rubber, such as defoliation and refoliation, multitempo-
ral remote sensing images were adopted to obtain temporally variable features to use in
estimates [3,6–16,19,24]. It was verified that the method based on multiple phenology
information can improve rubber estimation results [9,10]. Landsat TM/ETM+ is currently
the most broadly used sensor in rubber plantation estimation studies, especially multitem-
poral analyses, due to the advantages associated with its high revisit time of 16 days [2].
However, the cloudy climate conditions in the tropics introduce challenges for optical
sensors; therefore, it has been very difficult to popularize this method for studies of specific
periods and over large regions [9,10].

In terms of the estimation approaches used, supervised classifiers, including maxi-
mum likelihood [26], the Mahalanobis typicalities [3,18], the Mahalanobis typicalities with
a neural network [20], decision tree [7,11,13–16,18,24,25], K-nearest neighbor [11,18,27],
support vector machine [18,28], and random forest [17] classifiers, are commonly used
to map rubber plantations based on remote sensing. Most previous studies used pixel
information to estimate rubber plantation characteristics, and only three papers [11,18,27]
have discussed the use of the object-oriented classification approach for monitoring rubber
plantations. In these papers, spectral information was mostly considered; other features,
such as textural features, have rarely been discussed. In addition, among these studies,
the same supervised classifier used can provide different classification results because
of different remote sensing images, features, methods, and study regions. For example,
Zhai et al. [11], Dibs et al. [18], and Xiao et al. [24] used a decision tree classifier to map
rubber plantations and obtained the classification accuracies of 77.5%, 80.80%, and 92.50%,
respectively. The performances of these methods proposed in different studies cannot be
comparatively evaluated directly. Thus, rubber mapping based on remote sensing still
lacks systematic and comprehensive research with different remote sensing images, such
as PlanetScope data, different approaches, such as object-based method and pixel-based
method, and different features, such as texture features and spectral features, have not been
fully considered.

PlanetScope images were acquired by PlanetInc. in America, the world’s largest
satellite constellation, with more than 170 orbiting satellites. PlanetScope data have high
spatial (3–4 m) and temporal (daily) resolutions, which has been successfully applied on
many fields, for example, crop yield estimation [29], crop leaf area index estimation [30],
pasture biomass [31], tropical forest canopy height [32] and so on. Csillik et al. [32] used
the high temporal resolutions of Planet images, in view of limited capabilities of frequent
updating of moderate resolution satellite data, to estimate top-of-canopy height of tropical
forests. It has a significant advantage in acquiring high-quality images during the critical
monitoring window period of rubber, which is very important to map rubber plantations
by remote sensing. However, these data have not been used to monitor rubber plantations
up to now [2].

Therefore, in this paper, we use PlanetScope images and comprehensively utilize
four features, namely, spectral, vegetation index, first principal component, and textural
features, to build pixel-based RF/SVM and object-oriented RF/SVM approaches to conduct
rubber-monitoring research. The objectives are to assess the feasibility of monitoring rubber
forests with PlanetScope data and to propose a practical and feasible monitoring method.
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2. Materials and Methods
2.1. Study Area

Danzhou city is in northwestern Hainan Province, China, within coordinates rang-
ing from 19◦11′~19◦52′N and from 108◦56′~109◦46′E. This city has the largest land area
(3398 km2) and the longest coastline (307 km) of any city in Hainan Province. The region
has a tropical monsoon marine climate, with an average annual temperature of 23.1 ◦C and
an average annual rainfall total of 1823 mm. The terrain is mainly hilly, and from southeast
to northwest, the ground surface gradually inclines downwards; the elevations are high in
the southeast and low in the northwest, and the south and southeast regions contain low,
hilly areas. As one of the major rubber plantation areas in China, the rubber plantation area
in Danzhou city was 848.20 km2 in 2019, and the total yield was 60,969,000 kg according
to statistics [33] (p. 286). With the development of rubber plantations in China over the
past 100 years, Danzhou city has developed into one of the dominant regions in terms of its
rubber plantation area, rubber latex quantity and yield among all rubber plantation regions
in China. The research region considered in our study is located in eastern Danzhou city
and includes Xiqing Farm and some regions of Dongcheng town, Nada town, Dacheng
town, and other areas (see Figure 1). Rubber trees display obvious phenological change
characteristics. According to the growth changes of rubber buds and leaves, the phenologi-
cal stages can be divided into the red leaf stage, deciduous stage, fresh leaf stage (sprout
stage, elongating stage, bronze stage, color-changing stage, light green stage, and stable
stage) and mature leaf stage within a year, and these cyclic changes are shown in Figure 2.
The workflow by which rubber plantations were mapped in this study is shown in Figure 3.
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2.2. Data
2.2.1. MODIS Data

Since rubber trees cycle through mature leaf, red leaf, defoliation and fresh leaf periods
(Figure 2), the lowest NDVI value can be found according to the MODIS-NDVI time series
curve to determine the specific times of defoliation and leaf extraction in rubber forests.
This method has been verified by Liao et al. [8] and Liu et al. [7]. The MODIS data in this
study were MOD13Q1-NDVI products obtained from January to December 2019 with a
16-day return period and a 250-m spatial resolution; these products are typically used to
study land surface and vegetation conditions. The MODIS images taken in Hainan Province
were denoted H28V07, and a total of 23 images were collected in 2019. These data were
downloaded from the Level-1 and Atmosphere Archive & Distribution System Distributed
Active Archive Center Website (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 14
August 2019). The NDVI time series for 23 rubber forests in the study area were acquired
to provide a basis for determining the optimal remote sensing monitoring time.

2.2.2. PlanetScope Imagery Data

PlanetScope images were acquired by Planet Inc., the world’s largest satellite con-
stellation, with more than 170 orbiting satellites; together, this constellation can monitor
the whole world once per day. PlanetScope satellites are the world’s only remote sensing
satellites with high-resolution, high-frequency, and full coverage capabilities globally. In
the study, we selected PlanetScope images that were acquired on the 27th of February and
the 8th of June, 2019, and were clear and cloud free. The spatial resolution of the satellite
images was 3 m, and each image included four spectral bands: the blue, green, red and
near-infrared bands. The PlanetScope images used in this study were ortho-grade (3B) data
products; these imageries have undergone a series of processes (including sensor correction,
radiation correction, atmospheric correction, and geometric correction) to obtain true and
reliable surface reflectance images. The main parameters of the PlanetScope satellites are
shown in Table 1.

Table 1. Main parameters of the PlanetScope satellites.

Parameter Value Parameter Value

Orbit
International Space
Station’s orbit
Sun-synchronous orbit

Orbit Altitude 400 km
475 km

Orbit inclination 52◦

98◦ Sensor type
Bayer filter
charge-coupled
device (CCD) camera

Spatial resolution 3~4 m Breadth 24.6 km × 16.4 km

Spectral band

Band 1: blue (455–515 nm)
Band 2: green (500–590 nm)
Band 3: red (590–670 nm)
Band 4: near-infrared
(780–860 nm)

2.2.3. Ground Sample Data Collection

Sufficient samples of five types of classes, including forest, rubber, farmland, water,
and building, were obtained according to three field investigations conducted from January
to April 2020 and according to the visual interpretation of high-resolution Google historical
images using BIGEMAP software. We obtained a total of 787 point-geometry samples,
of which approximately 2/3 were randomly selected as training samples to build the
classification model and the remaining 1/3 were used as verification samples to validate
the classification model (shown in Table 2).

https://ladsweb.modaps.eosdis.nasa.gov
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Table 2. The samples used in this study.

Training Samples Validation Samples Total

Water 53 26 79
Building 71 35 106
Rubber 167 83 250

Farmland 125 62 187
Forest 110 55 165
Total 526 261 787

2.3. Segmentation

Image segmentation is the first step in the object-based classification workflow and
a critical process for creating objects based on intrahomogeneity and interheterogeneity,
which directly affect the image classification accuracy. The most widely applied method,
the multiresolution segmentation (MRS) algorithm [34], was used in this study. MRS is
a bottom-up region-merging technique that starts with one-pixel objects and iteratively
merges them into larger objects based on the regionally minimized heterogeneity principle.
In the MRS procedure, three key parameters (the segmentation scale, shape index and
compactness index) affect the image segmentation accuracy. Different parameter combi-
nations should be tested in the segmentation procurement step and validated by visual
examinations to obtain good segmentation results. In the foliation stage of rubber trees,
due to the similarities of spectral characteristics between rubber trees and forests, rubber
plantations and forestlands can be easily confused, and their boundaries are not clear;
therefore, undersegmentation easily occurs during the segmentation procedure. In the
defoliation stage of rubber trees, different rubber trees in the same rubber forest field have
different degrees of defoliation, resulting in heterogeneous spectral characteristics and
causing the study objects to be prone to oversegmentation. The segmentation of a single
image in the leafing or deciduous stage could lead to not only inaccurate segmentation
results but also inconsistent segmentation results for other images in these two stages.

Therefore, PlanetScope images taken during two different phenological phases were
analyzed in the segmentation procedure, with a total of 8 bands, including the blue, green,
red, and near-infrared bands of the PlanetScope images obtained on 8 June 2019, during
the rubber foliation period, and on 27 February, during the rubber defoliation period. The
weight of each band was set to 1. In the segmentation procedure, it is important to simulta-
neously consider images obtained in two periods to ensure the segmentation accuracy of
the rubber plantations by visual interpretation. First, we set a small segmentation scale of
35 with a shape value of 0.1 and a compactness value of 0.5 to obtain finely divided objects
and ensure that there were few undersegmented objects. The segmentation effect was good
for small-area ground objects, but excessive segmentation occurred for large construction
lands, farmlands, rubber plantations and forests. Second, based on the segmentation objects
generated in the previous step, we set a large segmentation scale of 55 to ensure that small
patches of large-area forests, farmlands, rubber plantations and water bodies were merged.
However, some small fragmentation still occurred, so the shape index and compactness
index were adjusted based on a shape value of 0.3 and a compactness of 0.5. Finally, based
on the segmentation results from the previous layer, a larger segmentation scale (80) was
applied, and the shape index and compactness index remained unchanged. Large-area
ground objects such as rubber plantations, forests and buildings were combined, and the
segmentation effect obtained at this step was the best.

2.4. Feature Extraction

In this study, a total of 50 feature types were obtained from multitemporal PlanetScope
images. These features can be categorized into four types: spectral features (8 features),
index features (33 features), the first principal component (PCA1) (1 feature), and textural
features (8 features). Since two classification approaches, namely, pixel-based and object-
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based classification methods, were used in this study, these features were calculated based
on pixel information and object information, respectively.

2.4.1. Spectral Features

The reflectance features of the blue, green, red, and near-infrared bands of the Plan-
etScope images obtained on 8 June 2019 (t1), and 27 February 2019 (t2), were applied in this
study. Therefore, a total of 8 spectral features were applied in the pixel-based and object-
based classification approaches: BLUEt1, GREENt1, REDt1, NIRt1, BLUEt2, GREENt2,
REDt2, and NIRt2.

2.4.2. Index Features

Vegetation indices are widely and easily used to express vegetation growth situations
in the field of remote sensing. In view of the obvious differences in the LAI, chlorophyll
content, and canopy density of rubber trees between the defoliation period and foliation
period, several indices confirmed to be sensitive to the chlorophyll content and the LAI were
selected to estimate rubber plantation characteristics in our work: the normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), difference vegetation index
(DVI), green difference vegetation index (GDVI), green normalized difference vegetation
index (GNDVI), modified simple ratio (MSR), chlorophyll index (CI), ratio vegetation
index (RVI), triangular vegetation index (TVI), soil adjusted vegetation index (SAVI), and
optimized soil adjusted vegetation index (OSAVI). Furthermore, the difference in each
index between the rubber defoliation period and foliation period was considered, as
this difference can be used to effectively delineate changes in the rubber tree cycle. The
difference in each index was calculated as follows. Using the difference in NDVI (dNDVI)
as an example, dNDVI was calculated by obtaining the NDVI value from the PlanetScope
image on 8 June 2019, and subtracting that obtained on 27 February 2019. The calculation
methods for the dEVI, dDVI, dGDVI, dGNDVI, dMSR, dCI, dRVI, dTVI, dSAVI, and
dOSAVI were the same as those for the dNDVI. We extracted 11 vegetation indices for each
PlanetScope image and the corresponding difference between the two periods, eventually
acquiring a total of 33 features for each classification method. These indices were also
calculated based on pixel information and object information. Detailed information on the
vegetation indices selected in this study is shown in Table 3.

Table 3. Vegetation indices used in this study.

Index Formulation Reference

NDVI (normalized difference vegetation index) NIR−RED
NIR+RED [35]

EVI (enhanced vegetation index)
2.5×(

(NIR−RED)
(NIR+6×RED−7.5×BLUE+1)

) [36]

DVI (difference vegetation index) NIR− RED [37]
GDVI (green difference vegetation index) NIR− GREEN [38]

GNDVI (green normalized difference
vegetation index)

(NIR−GREEN)
(NIR+GREEN)

[39]

MSR (modified simple ratio) ( NIR
RED−1)

( NIR
RED +1)

0.5
[40]

CI (chlorophyll index) NIR
GREEN − 1 [41]

RVI (ratio vegetation index) NIR
RED [42]

TVI (triangular vegetation index) 0.5[120 (NIR−GREEN)−
200(RED −GREEN)]

[43]

SAVI (soil-adjusted vegetation index) 1.5(NIR−RED)
(NIR+RED+0.5)

[44]

OSAVI (optimized soil adjusted vegetation index) 1.16×(NIR−RED)
(NIR+RED+0.16)

[45]

2.4.3. Textural Features

Rubber plantations, which are usually artificially cultivated, exhibit distinct spatial
distribution characteristics compared to natural forests, especially in the rubber foliation
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stage. Textural features can effectively reflect these spatial distribution characteristics in
remote sensing images. The introduction of textural features can offset the “same object with
different spectral features” or “different objects with the same spectral feature” phenomena
that can arise when using only spectral information. Therefore, it is worth introducing
textural information in rubber mapping research to improve the classification accuracy.

To fully utilize the information contained in the images taken in two periods and
reduce the overlap of information among different bands, we derived the first principal
component of the two images using the PCA method [46] to extract the textural features.
Bands 1–4 of the PlanetScope images obtained on 8 June 2019 and 27 February 2019 were
used as the inputs of PCA. The grey-level cooccurrence matrix (GLCM) algorithm [47] was
used to extract the textural features of different land cover types. The textural features
used in this study included homogeneity (HOM), contrast (CON), dissimilarity (DIS),
entropy (ENT), angular second moment (ANG), mean (MEAN), variance (VAR), and
correlation (COR).

It is worth noting that in the pixel-based classification procedure, it was necessary to
determine a suitable texture extraction window size for the PlanetScope images because
textural features must be calculated in a certain extraction window and different window
sizes may influence the representativeness of the textural characteristics of different land
cover types. In our work, the 8 textural features were extracted with window sizes of 3 × 3,
5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21, 23 × 23, 25 × 25,
27 × 27, 29 × 29, and 31 × 31 (for a total of fifteen window sizes). Then, the optimal
textural features were selected with a suitable window size based on random forest (RF)
importance (detailed information can be found in Section 2.4.4) analysis to finally obtain
HOMpixel, CONpixel, DISpixel, ENTpixel, ANGpixel, MEANpixel, VARpixel and CORpixel.

In the object-based classification procedure, we extracted a total of 8 textural features
corresponding to the first principal component of each segmentation object: HOMobject,
CONobject, DISobject, ENTobject, ANGobject, MEANobject, VARobject and CORobject.

2.4.4. Optimal Feature Selection

The use of excessive feature variables with redundant data may lead to an increase in
the computational complexity of a model and reduce its classification accuracy. Therefore,
the optimal feature variables must be selected from the primary feature dataset. RF
algorithms can be used to calculate the importance of feature variables and have been
widely used to select optimal feature variables. The basic concept of an RF algorithm is that
when a decision tree is established, some remaining original sample data are not extracted
in the sampling process, namely, the out-of-bag (OOB) data. These data are then used
to evaluate the performance of the decision tree and calculate the prediction error rate
of the model, that is, the OOB error. Then, the OOB error is calculated again after noise
interference is added to all random features in the OOB dataset. If the accuracy of the
OOB data is greatly reduced when random noise is added, the corresponding feature has a
large impact on the prediction results of the sample, further indicating that the feature is
relatively important, and vice versa. Thus, the importance of different feature variables
can be determined according to the OOB error. Finally, importance ranking was performed
according to the feature variable importance. Moreover, the former k (i =1, 2, . . . , 50)
features were input to construct an RF classification model and assess the impact of the
number of feature variables on the classification accuracy. We used the training samples
(see Table 2) to perform the optimal feature selection analysis.

2.5. Classification Methods

The classification performances of the two classification methods (the RF and SVM
approaches) were tested in our study based on the spectral and textural characteristics of
rubber plantations.

RFs are machine learning techniques that were first proposed by Breiman and Ad-
eleCulter in 2001 [48] on the basis of decision tree algorithms. RF algorithms integrate
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multiple trees through the idea of ensemble learning and use decision trees as the basic
units. RF algorithms have many advantages; for example, they have good noise toler-
ance, do not easily produce excessive fitting phenomena, have the capacity to deal with
high-dimensional data, have strong adaptability to different datasets and have no strict
demands regarding the forms of prediction variables that can be used (e.g., either quantita-
tive variables or qualitative descriptions can be used). Therefore, RFs have been widely
used in ground feature classification studies. In the RF construction process, there are two
very important parameters: the number of trees in the forest and the number of random
variables at each node. In this work, the number of trees was fixed at 100, and the number
of random variables was set to the square root of the number of features.

The other model used in this study was an SVM provided by Cortes and Vapnik [49]
based on the structural risk minimization principle. The success of SVMs is based on
two key technologies: (1) designing optimal hyperplanes with maximum spacing through
the use of established principles and (2) designing the above linear optimal classification
surface in the high-dimensional feature space and obtaining a nonlinear learning algorithm
in the input space by using a kernel function. Common kernel functions include linear
kernels, polynomial kernels, radial basis function kernels, Laplacian kernels, and sigmoid
kernels. In the present study, we adopted a radial basis function kernel.

2.6. Classification Accuracy Evaluation

In this study, we evaluated the accuracy of the classification results by using the
pixel-based confusion matrix method; this method utilizes a standard accuracy evaluation
matrix with n rows and n columns. As the most commonly used evaluation indicators in
image classification research, the producer’s accuracy (PA) and user’s accuracy (UA) were
derived for each class, and the overall accuracy (OA) and Kappa index of agreement (KIA)
were also calculated to assess the performance of the rubber plantation classification. These
indicators are calculated as follows:

OA =
∑k

i=1 Nii

N
, (1)

PA =
Nkk
N+k

, (2)

UA =
Nkk
Nk+

, (3)

KIA =
N ∑k

i=1 Nii −∑k
i=1(Ni+ × N+i)

N2 −∑k
i=1(Ni+ × N+i)

, (4)

where k is the total number of categories, N is the total number of samples, the diagonal
elements Nkk denote the number of samples correctly assigned to real samples in the
category, Nk+ is the total number of samples of class i, N+k is the total number of samples
assigned to class j, and Ni and Nj are the values associated with elements (i, j) in the matrix.

3. Results
3.1. Determination of the Optimal Monitoring Period for Rubber Plantations

Due to differences in annual temperatures and precipitation, the time of rubber tree
defoliation differs annually, and the degree of defoliation of rubber tree leaves at different
defoliation stages affects the remote sensing monitoring results. In the defoliation stage and
leaf-extraction stage, and especially in the late defoliation stage and early leaf-extraction
stage, the spectral characteristics of rubber trees in the satellite images differed from those
in the leafing stage; this was conducive to accurately identifying rubber trees. In this study,
MOD13Q1-NDVI product data obtained in 2019 were used to study the variations in the
NDVI values of rubber trees in 2019 in the study region. As shown in Figure 4, we found
that the trend line of the NDVI values displayed a trough from January to April, indicating
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that this period corresponded to the defoliation and leaf-extraction periods of the rubber
trees; thus, this period was determined to be the best temporal window for remote sensing
monitoring, and this result was consistent with previous research conclusions [7,8]. The
NDVI values of rubber trees were the lowest on the 49th day, and it could be inferred that
the NDVI values of rubber trees remained lowest between the 49th and 65th days. Based
on this information, high-quality PlanetScope images of the target region that met the time
requirements were queried, and an image taken on 27 February 2019 (day 58), was selected.
The rubber trees enter mature leaf period from April to December, so any PlanetScope
image taken in this period with good quality and no clouds could be chosen. We selected
an image taken on 8 June 2019 for use in this study.
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3.2. Optimal Feature Selection
3.2.1. Optimal Pixel Feature Selection

(1) Confirm the suitable texture-extraction window size for the PlanetScope images

The extraction window size has a large influence on the textural features of different
land cover types. It was thus essential to determine the suitable extraction window size
for PlanetScope images to estimate rubber plantation information. Eight kinds of textural
features, including the HOM, CON, DIS, ENT, ANG, MEAN, VAR, and COR, were calcu-
lated at fifteen window sizes from 3 × 3 to 31 × 31. Then, the classification importance
of each textural feature obtained at the fifteen window sizes was assessed using the RF
method. Figure 5 shows that the importance of different textural features varied with the
window sizes when distinguishing among different land cover types. As the extraction
window size increased, except for the MEAN feature, the importance of the PlanetScope
textural features increased with small fluctuations and reached maximal values at the
31 × 31 window size. For MEAN, the importance displayed a fluctuating trend as the
window size increased, and the maximum value was observed for the 9 × 9 window size.
Therefore, the MEAN features for the 9 × 9 window size and the HOM, CON, DIS, ENT,
ANG, VAR, and COR features for the 31 × 31 window size were selected as the optimal
textural features and combined with the spectral features, index features, and PCA1 to
derive pixel-based classifications of the PlanetScope images.
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(2) Optimal pixel-based feature selection

In this paper, the importance of the 50 initial pixel-based feature variables—including
eight spectral features, 33 index features, the PCA1 and eight textural features derived
at suitable window sizes—was evaluated by the RF method, and importance ranking
was performed according to the feature variable weights (Figure 6). Figure 7 shows the
relationship between the number of feature variables and the overall classification accuracy.
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As shown in Figure 6, the weights of the first six features were greater than 1, especially
that of dMSR, which was greater than 2; additionally, the weights of the middle 12 features
were between 0.5 and 1, and the weights of the last 32 features were less than 0.5. As
shown in Figure 7, with the increase in the number of feature variables, the overall classifi-
cation accuracy of features 1–26 in the first section exhibited an upwards trend with slight
fluctuations, reaching a maximum of 98.47% when the number of features was 26. The
overall classification accuracy of features 27–50 in the latter segment gradually stabilized.
Thus, as the number of features increased, the numbers of redundant features and related
features also increased, thus affecting the accuracy of the classifier. We selected the first
26 feature variables with the maximum overall accuracy as the optimal feature subset,
and they include dMSR, dNDVI, NIRt1, MEAN, GNDVIt1, REDt1, GREENt1, GREENt2,
EVIt2, BLUEt2, HOM, BLUEt1, dGNDVI, REDt2, NIRt2, PCA1, NDVIt2, dRVI, NDVIt1,
COR, EVIt1, TVIt2, DIS, ENT, GNDVI, and dTVI.

3.2.2. Optimal Object-Based Feature Selection

Similar to optimal pixel-based feature selection, optimal object-based feature selection
was also performed before the object-based classification procedure. Figure 8 shows the
weights of the 50 object-based feature variables derived by the RF method, and Figure 9
shows the relationship between the number of object-based feature variables and the
overall accuracy.
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As shown in Figure 8, the weights of the first four features were greater than 1,
especially the weight of dMSR, which was greater than 2; additionally, the weights of the
middle 14 features were between 0.5 and 1, and the weights of the last 32 features were
less than 0.5. As shown in Figure 9, as the number of feature variables increased, the
overall classification accuracy of features 1~16 displayed an upwards trend with slight
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fluctuations. The overall classification accuracy of features 17~27 displayed a downwards
trend, and that of features 28~50 exhibited an upwards trend and gradually stabilized. The
overall accuracy reached a maximum of 96.95% when the number of features was 9 and
28. To reduce the redundancy of features and improve the simplicity of the model for use
in practical applications, the first 9 feature variables were selected as the optimal feature
subset: dMSR, NIRt1, BLUEt1, EVIt2, DIS, REDt1, dNDVI, GREENt1, and PCA1.

3.3. Rubber Plantation Mapping and Accuracy Assessment

Four rubber plantation maps were finally derived using the four classification ap-
proaches (Figures 10 and 11). The rubber plantation area in the study region was estimated
to be 152.35 km2, 139.37 km2, 162.67 km2, and 159.21 km2 according to the pixel-based RF
approach, pixel-based SVM approach, object-based RF approach and object-based SVM
approach, respectively. The pixel-based approaches yielded smaller rubber plantation areas
than the object-based approaches. We also found that significantly fewer fragmentation
patches were derived in the object-based approaches than in the pixel-based approaches.

As shown in Tables 4 and 5, the object-based approaches achieved higher accuracies
than the pixel-based approaches, according to the obtained confusion matrix; the overall
accuracy and KIA increased by more than 1.66–4.25% and 2.22–5.75%, respectively, between
these two approaches. Higher user accuracies for rubber were obtained with the object-
based RF and SVM approaches (95.18%) than with the pixel-based RF and SVM approaches
(91.25% and 93.83%, respectively), indicating that object-based methods can effectively
reduce omission errors when estimating rubber plantation characteristics. For rubber,
the producer’s accuracies of the object-based approaches were higher than those of the
pixel-based approaches, exhibiting increases of 3.94–8.22%, suggesting that object-based
methods excel in obtaining lower commission errors. For the easily confused farmland and
forestland cover types, the producer’s accuracies and user’s accuracies of the object-based
methods were also higher than those of the pixel-based methods.

Table 4. Pixel-based classification accuracy comparison between the RF and SVM approaches.

Type
RF Classification SVM Classification

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Water 100.00% 96.30% 100.00% 100.00%
Building 85.71% 100.00% 88.57% 93.94%
Rubber 87.95% 91.25% 91.57% 93.83%

Farmland 95.16% 88.06% 95.16% 90.77%
Forest 85.45% 82.46% 89.09% 87.050%

Overall accuracy 90.04% 92.34%
KIA 0.87 0.90

Table 5. Object-based classification accuracy comparison between the RF and SVM approaches.

Type
RF Classification SVM Classification

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Water 100.00% 96.30% 96.15% 96.15%
Building 94.29% 94.29% 88.57% 96.88%
Rubber 95.18% 95.18% 95.18% 95.18%

Farmland 95.16% 92.19% 98.39% 91.04%
Forest 87.27% 92.31% 89.09% 92.45%

Overall accuracy 93.87% 93.87%
KIA 0.92 0.92
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According to the comparative analysis performed between the RF and SVM classifiers,
the accuracy of identification with the pixel-based SVM classifier was slightly better than
that of the pixel-based RF classifier, but there was no significant difference found between
the classification accuracy of the object-based RF classifier and that of the object-based SVM
classifier. When identifying rubber plantations, the pixel-based SVM approach displayed
better producer’s accuracy and user’s accuracy than the pixel-based RF approach, but the
object-based RF approach and the object-based SVM approach exhibited equal capacity
with the same producer’s accuracy (95.18%) and user’s accuracy (95.18%).

In order to show the differences of different classification results in detail, we selected
two rubber intensive planting areas (site A and B) in the research area as the key analysis
objects for in-depth discussion (see Figure 12). Compared to pixel-based classification
approaches, object-based classification approaches can effectively reduce the degree of
fragmentation. As shown in Figure 12, the fragmentation degrees of the rubber planta-
tion maps derived using the pixel-based approaches were apparently higher than those
obtained with the object-based approaches, mainly because the pixel-based classification
methods consider a single pixel as the identification unit. The rubber trees in the same
forestland area can have different canopy structures, especially during the deciduous stage,
which leads to heterogeneous remote sensing recognition of the characteristics of rubber
trees. Therefore, the classification results obtained with the pixel-based classifier are in-
fluenced by serious salt-and-pepper phenomena. In addition, the pixel-based classifiers
performed comparatively poorly in distinguishing rubber tree, farmland and forest areas.
For example, some farmland was misidentified as rubber plantation by the pixel-based
RF/SVM approaches, as shown in Figure 12(A-3,A-4). However, compared to object-based
RF approaches, pixel-based methods have obvious advantages when identifying forest
paths or small roads. The object-based RF approach displayed the worst performance in
this context, as shown in Figure 12(B-5), and the object-based SVM approach yielded the
best performance (Figure 12(B-6)). In this study, although the object-oriented RF and SVM
produced the same classification accuracy based on the evaluation of the confusion matrix,
the object-based SVM classifier was superior to the object-based RF classifier in some tasks,
such as forest path recognition and plot boundary forest recognition. The selection of
validation samples is crucial for evaluating the accuracy of classification results, and the
applied approach should be verified in different research areas and with more sample sets
in the future.
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Figure 12. Comparison of rubber plantation maps at two sites derived based on different classification
methods. (A-1,A-2) show the PlanetScope images taken at Site A on 8 June 2019, and 27 February
2019, and are combinations of B4, B3, and B2; (A-3,A-4) are the classification results obtained through
pixel-based RF approach and pixel-based SVM approach, respectively; (A-5,A-6) are the classification
results derived using the object-based RF approach and the object-based SVM approach, respectively;
for the images in (B-1–B-6) see above. (A-3–A-6) and (B-3–B-6) were superimposed on the image
obtained on 8 June 2019.
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4. Discussion
4.1. Classification Accuracy Analysis

According to the classification accuracy evaluation results derived using the confu-
sion matrix, the object-oriented classification methods were superior to the pixel-based
classification methods; this finding was consistent with the results of a previous study [11].
Zhai et al. [11] comparatively analyzed the performances of pixel- and object-based ap-
proaches in mapping rubber plantations and showed that “the rule-object-based phenology
approach (with an overall accuracy of 77.5% and a kappa coefficient of 0.66) and nearest-
neighbor-object-based phenology approach (91.0% and 0.86) achieved higher accuracies
than the rule-pixel-based phenology approach (72.7% and 0.59)”. Although poor classifi-
cation results were not obtained by these approaches in our study, some dirt roads were
misidentified as farmland, mainly because only asphalt roads and buildings were selected
as the training samples for building objects (not including dirt roads), and some training
samples of farmland objects were in the bare land class. Since this study focused on the
identification of rubber plantation through remote sensing, we did not conduct an in-depth
exploration of the estimation of dirt roads.

The selection of the optimal feature subset is a crucial step in the estimation process,
which influences the classification accuracy and the simplicity of the model for use in
practical applications. For the selection of the optimal feature subset based on pixel infor-
mation (see Figure 7), with increasing number of feature variables, the overall classification
accuracy of features 1–26 showed an upwards trend with slight fluctuations. When the
number of features was 6, 19, and 26, the overall accuracy reached peak values of 96.95%,
97.71%, and 98.47%, respectively. There was not a large difference among the three overall
accuracies. To simplify the practical application of the proposed approach with few feature
variables, we again evaluated the classification results using the validation samples. The
results are provided in Table 6. For the pixel-based RF classifier, there were slight differ-
ences in the overall accuracy, KIA, producer’s accuracy, and user’s accuracy among the
sets of classification results when the first 6, 19, and 26 features were selected. Therefore,
the first six features can be selected as the optimal feature subset to build the pixel-based
RF classifier in practical application. However, for the pixel-SVM classifier, as the number
of features increased, the overall accuracy, KIA, producer’s accuracy, and user’s accuracy
of the classification results increased. This finding shows that different classifiers respond
differently to the number of characteristic variables. Although the classification accuracy of
the pixel-based SVM was better, the number of feature variables used was too high (up to
26), and making the approach inconvenient for practical applications. Therefore, we do not
advocate for the use of this method.

Table 6. The response of the pixel-based RF/SVM classifiers to the number of feature variables.

RF (6) RF (19) RF (26) SVM (6) SVM (19) SVM (26)

Overall accuracy 90.42% 90.80% 90.04% 88.12% 90.42% 92.34%
KIA 0.88 0.88 0.87 0.85 0.88 0.90

Producer’s accuracy 87.95% 87.95% 87.95% 87.95% 87.95% 91.57%
User’s accuracy 91.25% 91.25% 91.25% 91.25% 93.59% 93.83%

4.2. Research Limitations and Prospects

(1) In studies of rubber remote sensing mapping, in addition to the vegetation index
with visible bands, some vegetation indices containing strong water absorption bands, such
as the land surface water index (LSWI) [16,50,51] or normalized difference moisture index
(NDMI) [9,16], which consider shortwave-infrared band 1 (1550–1750 nm); the normalized
burn ratio (NBR) [13], which considers shortwave infrared band 2 (2080–2350 nm) of the
Landsat TM and ETM+; and OLI sensors, were introduced to monitor rubber plantations.
Vegetation indices that consider the red-edge band have also displayed excellent estimation
abilities for rubber plantation assessments [24], and they include the normalized difference
RE1 (NDRE1) index and the red-edge spectral index (RESI), both of which use data collected
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by Sentinel-2 sensors. In comparison with these Land-sat/Sentinel-2 data, PlanetScope
dataset contain fewer spectral bands, which may cause issues when selecting and using
images; however, PlanetScope data have obvious advantages regarding their spatial and
temporal resolutions.

(2) In this study, PlanetScope image features taken during the key phenological periods
of rubber trees were comprehensively utilized to construct an object-oriented classifica-
tion method for monitoring rubber plantations; good results were achieved, and it was
particularly important to determine the appropriate monitoring time for the defoliation
and leaf-extraction stages. Based on MODIS-NDVI time series changes, the optimal time
window for monitoring rubber plantations in the study area using remotely sensed imagery
was determined to be from the 49th day to the 69th day of 2019; thus, we selected the
best-quality PlanetScope images taken during this period for this research. However, due
to differences in temperature and precipitation conditions among different regions, the
defoliation and leaf-extraction periods of rubber forests were inconsistent. Therefore, at the
provincial scale or for larger spatial scopes, it is necessary to determine the best monitoring
period for different regions individually.

(3) In addition, as latex prices have decreased, many rubber farmers have begun
to utilize understorey planting to reduce their economic losses; these activities have a
certain impact on the accuracy of identification for remotely sensed rubber plantations.
Determining how to remove or reduce the influence of understorey green vegetation will
be the focus of future research.

5. Conclusions

In this study, the multiple features of multitemporal PlanetScope imagery were com-
prehensively utilized to construct object-oriented RF/SVM classification methods and pixel-
based RF/SVM methods for monitoring rubber forests, and good results were achieved.
The following conclusions can be drawn from this study.

(1) The optimal time window for monitoring the rubber forests in the study area using
remotely sensed imagery was determined to span from the 49th day to the 65th day of 2019
based on MODIS-NDVI time series change characteristics; thus, the PlanetScope images
utilized in this study were confirmed based on this period.

(2) The contribution rate of the dMSR feature was the largest among all considered
features, regardless of whether pixel-based methods or object-oriented methods were used.
Among the eight texture features, MEAN displayed the greatest contribution, with a weight
of 1.10 in the pixel-based methods, and DIS exhibited the greatest contribution in the
object-based methods, with a weight of 0.97.

(3) Compared to the pixel-based approach, the object-oriented RF/SVM classification
approach achieved better classification results, with an overall accuracy of 93.87% and a
KIA of 0.92. The highest producer’s accuracy and user’s accuracy of plantation classifica-
tion with this method reached 95.18%. The object-based SVM classifier exhibited better
performance than the object-based RF classifier to some extent.

(4) This study showed that it is feasible to use PlanetScope data to perform rubber
tree monitoring. PlanetScope sensors are thus acceptable data sources that can effectively
solve problems associated with missing images in the optimal monitoring period, which
includes the rubber defoliation and leaf-extraction phases; finally, these images can be used
in other practical applications.
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