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A B S T R A C T   

Variations in land surface phenology (LSP) along elevation gradients strongly impact human life and wildlife 
species distribution across the Tianshan Mountains (TM) in arid and semiarid Central Asia. However, changes in 
the elevational patterns of LSP in recent decades have not been well understood for the TM. Here, we charac
terized changes in vegetation greenup date (GUD) and its elevational pattern in the TM and five subregions 
during 2001–2020, with Moderate Resolution Imaging Spectroradiometer (MODIS) time series of the enhanced 
vegetation index (EVI). Impacts of land surface temperature (LST) and precipitation on GUD changes were also 
examined. The results show that GUD changes across the TM were mostly nonsignificant (P > 0.05). Approxi
mately 13.4% of the region experienced significant advance in GUD. Furthermore, GUD at low and middle el
evations (approximately 1000–2500 m) showed greater proportions of significantly earlier trends. This elevation 
dependence of GUD changes led to altered elevational patterns of GUD. First, most GUD isolines showed shifts 
toward higher elevations, and the GUD isolines of day of year (DOY) 110 and 120 located at low and middle 
elevations exhibited greater mean elevational shifts than those of others for most subregions. Specifically, the 
mean elevation of the DOY 110 isolines moved from approximately 1325 m to 2126 m in a subregion. Second, 
increased GUD elevation gradients were observed in several subregions. The spatial pattern of GUD trends may 
be primarily caused by the increased LST in April, particularly nighttime LST. The results provide information for 
rangeland management in the context of rangeland degradation across the TM.   

1. Introduction 

The Tianshan Mountains (TM) across arid and semiarid Central Asia 
have multiple key ecosystem functions and services. A large area of 
grasslands in the TM are used as rangelands, and provide abundant food 
and other resources to humans (Hu, 2004). The TM also serve as 
important habitats for many wildlife species. However, the ecosystems 
and human livelihoods in this region are facing multiple environmental 
threats (de Beurs et al., 2015; Liao et al., 2014b; Lioubimtseva and 
Henebry, 2009; Yu et al., 2021), such as land degradation (Hu, 2004; 
Lemenkova, 2014) and biodiversity loss (IPBES, 2018). 

Land surface phenology (LSP), a measure of vegetation seasonality 
over a landscape (de Beurs and Henebry, 2004; Henebry and de Beurs, 
2013), has substantial impacts on ecosystem processes and functions 

(Richardson et al., 2013; Silveira et al., 2021). In high mountainous 
regions, the spatial patterns of some LSP metrics generally exhibit 
dependence on elevation due to temperature differences. Both human 
life and wildlife species activities are related to the elevational patterns 
of LSP in the TM. Alpine transhumance is the traditional grazing pattern 
as affected by the differences in LSP across elevations, and overgrazing 
has caused widespread rangeland degradation in this region (Zhao et al., 
2007; Hoppe et al., 2016; Huang et al., 2018). The spatial patterns of LSP 
metrics and their changes are valuable for guiding the adaptation of 
transhumance patterns for rangeland restorations (Browning et al., 
2019; Matongera et al., 2021). On the other hand, there is distinct 
elevation dependence of the spatial distribution and seasonal motivation 
of many wildlife species across the TM (Hu et al., 2004). Previous studies 
have shown that the timing of vegetation greenup determines the food 
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abundance of herbivores in spring and therefore affects their spatial 
distribution and motivation in other regions (Merkle et al., 2016; Oeser 
et al., 2019). In short, knowledge of variations in LSP, especially the 
elevational patterns, is valuable for mitigating multiple environmental 
concerns across the TM. 

Previous studies have reported asynchronized changes in vegetation 
phenology across elevations (e.g., Piao et al., 2011; Thompson and 
Paull, 2017) and altered elevational gradients of phenology as a result of 
elevation-dependent temperature changes (e.g., Vitasse et al., 2018; Dai 
et al., 2021). For example, Vitasse et al. (2018) found a decreased 
elevation gradient of tree leaf out dates in Europe during the last five 
decades mainly caused by an increased chilling degree days at higher 
elevations. An increased elevation gradient of vegetation greenup date 
(GUD) during 2000–2011 was observed on the Qinghai-Tibetan Plateau 
(Shen et al., 2014). Misra et al. (2021) reported the differences in spring 
phenology elevation gradients at higher and lower elevation varied in 
response to winter and spring temperature changes in the Bavarian Alps, 
Germany. These studies reflected a spatially heterogeneous nature of 
changes in spring phenology elevation gradients across the globe. 

Multiple studies suggest that the TM experienced a warming climate 
in recent decades (e.g., Deng et al., 2015; Li et al., 2021b; Xu et al., 2018; 
Zhang et al., 2021). For example, Deng et al. (2015) reported a stronger 
increase in daily minimum temperature at low and middle elevations in 
the Kaidu River Basin in the TM during 1958–2010. Meanwhile, earlier 
GUDs in the last several decades across the TM have been observed 
based on satellite remote sensing data (e.g., Dilixiati et al., 2019; Zhang 
et al., 2019; Li et al., 2021a; Wu et al., 2021). Using the Advanced Very 
High Resolution Radiometer (AVHRR) NDVI dataset, Li et al. (2021a) 
revealed a large area of significantly advanced GUD over the TM from 
1982 to 2014. Studies using the Moderate Resolution Imaging Spec
troradiometer (MODIS) C5 phenological product (2001–2014, Dilixiati 
et al., 2019) and C6 reflectance product (2000–2019, Wu et al., 2021) 
also found many earlier GUDs, of which most were non-significant. 
Meanwhile, these studies also characterized the elevation gradients of 
GUD across the TM over the entire study periods (Dilixiati et al., 2019; 
Wu et al., 2021). GUD trends may have led to altered GUD elevational 
pattern if the trends across elevations were asynchronized in the TM. 
However, to our knowledge, shifts in the elevational pattern of GUD, 

which are important for regional ecology and land management, have 
not been well characterized across the TM. 

The objective of this research was to characterize changes in the 
spatial pattern of GUD along the elevation gradient across the TM for the 
period of 2001–2020. We used MODIS land surface reflectance data at 
500 m spatial resolution to estimate GUD. The following three questions 
were addressed: (1) Do GUD changes show elevation dependence across 
the TM? (2) Are there shifts in the spatial pattern of GUD along the 
elevation gradient? And (3) how do temperature and precipitation affect 
GUD changes? 

2. Materials and methods 

2.1. Study area 

The study area (72-95◦E, 41-46◦N) covers the majority of the TM 
across Central Asia (Fig. 1). To characterize the GUD elevational pattern, 
we focused on areas containing mountains and parts of the mountain 
front plains. The study area was eliminated based on elevation and slope 
(Kapos et al., 2000), with elevation>500 m a.s.l. and slope>1.5◦. The 
elevation and slope were derived from the NASADEM product with a 
spatial resolution of 30 m (NASA JPL, 2020) obtained from the Google 
Earth Engine (GEE) platform. We only analyzed areas with continuous 
mountains. Mountains apart from the continuously mountainous region 
were excluded. Furthermore, small voids (areas smaller than 1000 km2) 
within the continuously mountainous region were filled. Located in an 
arid and semiarid climate zone, the major vegetation types over the TM 
are grasslands with multiple subtypes along the elevation gradient (Hu, 
2004). Desert vegetation is widespread at lower elevations. Forest belts 
are generally distributed at middle elevations, particularly on northern 
slopes of the TM. Above the forest belts, the dominant vegetation types 
are alpine steppe and alpine meadow. 

2.2. Data and preprocessing 

2.2.1. MODIS land surface reflectance 
The 500 m MOD09A1 C6 land surface reflectance time series data (8- 

day interval, Vermote, 2015) during 2001–2020 were obtained from 

Fig. 1. Land cover map of the year 2001 across the Tianshan Mountains (TM) derived from the ESA CCI product.  
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https://ladsweb.modaps.eosdis.nasa.gov/. We calculated the enhanced 
vegetation index (EVI, Huete et al., 2002) for the retrieval of GUD. The 
normalized difference snow index (NDSI, Hall and Riggs, 1995) was 
used to identify observations affected by seasonal snow cover in the EVI 
time series. 

2.2.2. MODIS land surface temperature 
We obtained the MOD11A2 C6 8-day average land surface temper

ature (LST) data with a 1000 m spatial resolution (Wan et al., 2015) 
during 2001–2020 from https://ladsweb.modaps.eosdis.nasa.gov/. 
Dilixiati et al. (2019) reported very strong linear correlations between 
the MOD11A2 LST and the weather station observed air temperature for 
the TM in Xinjiang, China. GUD was found to have different responses to 
preseason minimum and maximum temperatures in some regions (e.g., 
Shen et al., 2016; Hou et al., 2018). Therefore, we used LST in both 
daytime (LSTD) and nighttime (LSTN) in this research. For each pixel, 
we removed the low-quality LST estimates in the LSTD and LSTN time 
series based on the quality control layers. We then filled the gaps in the 
time series using linear interpolation. The gap filled LSTD and LSTN 
were resampled to a 500 m spatial resolution using bilinear interpola
tion. To investigate the effects of spring temperature on GUD changes, 
we calculated six monthly average LST variables, including LSTD in 
March (day of year (DOY) 57–88, LSTDMAR), LSTN in March (LSTNMAR), 

LSTD in April (DOY 89–120, LSTDAPR), LSTN in April (LSTNAPR), LSTD 
in May (DOY 121–152, LSTDMAY), and LSTN in May (LSTNMAY). Pre
season temperature is a widely used temperature metrics for pheno
logical studies (e.g., Jeong et al., 2011; Shen et al., 2016). Here, we used 
fixed periods rather than pixel-tuned preseason to allow a spatial com
parison of LST trends among pixels (Piao et al., 2011). 

2.2.3. ERA5-land monthly precipitation 
We obtained the ERA5-land monthly precipitation (Muñoz-Sabater 

et al., 2021) during 2001–2020 from the Copernicus climate change 
service (https://cds.climate.copernicus.eu/about-c3s). This reanalysis 
dataset has a spatial resolution of 0.1◦. The ERA5 precipitation data 
were reported to have good performance in Central Asia (Zandler et al., 
2020; Rakhmatova et al., 2021) and China (Jiao et al., 2021). We 
calculated the total precipitation from January to April (TPJA) for each 
year, and then resampled the TPJA to a 500 m spatial resolution using 
bilinear interpolation. 

2.2.4. ESA CCI land cover map 
We used the ESA CCI land cover map (300 m spatial resolution) for 

the year 2001 (Santoro et al., 2017) from http://maps.elie.ucl.ac. 
be/CCI/viewer/. We combined the original 22 land cover types into 
nine types (Fig. 1), and then resampled the combined map to a 500 m 

Fig. 2. (a) Spatial distribution of vegetation greenup date (GUD) trends across the TM during 2001–2020, and (b) the proportions of significantly earlier GUD (p ≤
0.05) for different elevation zones. 
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spatial resolution. The combined grasslands consist of the original ESA 
CCI grassland, sparse vegetation, and natural vegetation/cropland 
mosaic. Forests are the combination of all forest types and the two 
mosaic types of natural vegetation. GUD change analyses were per
formed for grasslands, forests, and shrublands. 

2.3. Smoothing of the EVI time series and retrieval of GUD 

We removed low-quality observations (i.e., clouds, cloud shadows, 
and snow) and then filled the gaps and smoothed the EVI time series 
following Ding et al. (2022). Cloud and cloud shadow observations were 
identified based on the MOD09A1 quality layer. Snow cover observa
tions were identified using NDSI > 0.1 (Gladkova et al., 2012). For each 
pixel, we filled the snow contaminated observations with the back
ground EVI value, which was determined using the 5% percentile of all 
clear EVI values within the most recent five years (Gray et al., 2019). We 
then filled the cloud contaminated observations in the EVI time series 
with linear interpolation based on cloud-free EVI values. The asym
metric Gaussian function fitting provided in the TIMESAT 3.3 software 
was selected to smooth the preprocessed EVI time series (Eklundh and 
Jönsson, 2017; Jönsson and Eklundh, 2002, 2004). The median filter 
with a spike parameter value of 1.0 was used to detect remaining spikes 
in the EVI time series. The detected spikes were excluded from the fitting 

process. For the fitting process, the iteration times of fitting the upper 
envelope was three and the fitting strength was three. The timing of 30% 
seasonal EVI amplitude was determined as GUD. 

2.4. Statistical analyses 

Monotonic change rates of GUD, LST variables, and TPJA for the 
2001–2020 period were characterized using the Sen-Theil slope (Sen, 
1968; Theil, 1992). The Man-Kendall trend test was utilized to examine 
the significance of the slope (Mann, 1945). The Spearman rank corre
lation analysis was used to examine the relationships between interan
nual variations in GUD and the six LST variables and the TPAJ. We also 
performed least square linear regression between the time series of GUD 
and LST variables and then computed the GUD modeled by each of the 
six LST variables using the corresponding regression function (Liu et al., 
2018). The Sen-Theil slopes of observed and modeled GUDs were 
compared to further explain the impacts of LST on GUD changes. 

We compared the elevational patterns of the mean GUD at the start 
(2001–2005) and end (2016–2020) of the study period. Changes in the 
GUD elevational patterns were characterized by (1) elevational shifts of 
GUD isolines and (2) changes in GUD elevation gradients. The isolines 
were generated based on the spatial moving average GUD (moving 
window size 9*9 pixels) to achieve smooth isolines. Short isolines 

Fig. 3. Overlay of the significantly earlier GUD on the DEM over the five subregions. The polygons of the earlier GUD were converted from the raster layer of GUD 
trend. Polygons with areas smaller than 5 km2 were removed, and small voids within the polygons were filled. We smoothed the boundaries of the polygons with the 
polynomial approximation with exponential kernel algorithm (Bodansky et al., 2002). 
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(length < 20 km) were removed from further analyses. In total, six GUD 
isolines with DOY ranging from 100 to 150 (10-day interval) were 
selected according to the GUD ranges across the region. Regarding the 
strongly heterogeneous climate and vegetation composition across the 
TM, we selected five subregions for detailed analyses. The subregions 
were delineated according to the following criteria: (1) there were sig
nificant trends in GUD, (2) the regions cover either the northern or 
southern slope of the TM, and (3) the regions were dominated by natural 
vegetation. The selected subregions are displayed in Fig. 2a. GUD 
elevation gradients were only analyzed for the five subregions. 

3. Results 

3.1. Elevation-dependent GUD trends over the 2001–2020 period 

Most of the GUD trends across the TM during 2001–2020 were sta
tistically nonsignificant (p > 0.05, Fig. 2a). Approximately 13.4% of the 
region experienced significantly earlier GUD. Significantly later GUD 
was observed for only 1.3% of the region. We found strong elevation 
dependence of the GUD changes. Larger proportions of significantly 
earlier GUD were revealed at low and middle elevations (approximately 
1000–2500 m a.s.l.) for the TM (Fig. 2b). This phenomenon also 
occurred in all subregions despite their different environments. For 
instance, more than 60% of the pixels experienced significantly earlier 
GUD across 1500–2000 m a.s.l. in subregion A, while for 2500–3000 m 
a.s.l. the proportion was smaller than 10%. For all subregions, the 
largest proportion of significant trend toward earlier GUD was found in 
elevation zones 1500–2000 m or 2000–2500 m a.s.l. 

Fig. 3 displays the overlay of the spatially continuous trends of 
significantly earlier GUD on the DEM. The earlier GUD showed hori
zontal zonal distribution patterns in all subregions except for subregion 
C. Among the subregions, the elevations of the horizontal zones were 
different. For example, the horizontal zone of subregion D was mainly 
located between elevations of approximately 1500–2000 m a.s.l. For 
subregion E, the elevation range was approximately 2000–2500 m a.s.l. 
The spatial pattern of earlier GUD was fragmented in subregion C but 
also mainly occurred below an elevation of approximately 2500 m a.s.l. 
In addition, overlay of the earlier GUD and the land cover map indicates 
that the earlier GUD trends were mainly located in grasslands and forests 
around the lower margin of the forest belt in each subregion (Fig. S1). 

3.2. Altered GUD elevational pattern 

Most GUD isolines showed shifts toward higher elevations between 
2001–2005 and 2016–2020 across the TM and the five subregions 
(Fig. 4). Downward shifts were only observed for the isolines of DOY 140 
and 150 in subregion A and the isolines of DOY 150 in subregion B with 
elevational shifts smaller than 100 m (Fig. 4a and 4b). In 2001–2005, the 
GUD isolines of DOY 110 and 120 are mainly located at low and middle 
elevations. And for all regions except for subregion E, the GUD isolines 
of DOY 110 and 120 exhibited stronger shifts than the others. This 
phenomenon was more evident in subregion A, with the mean elevation 
of the DOY 110 isolines shifting from 1325 m to 2126 m a.s.l. The maps 
of the GUD isolines of DOY 110 and 140 for the five subregions depict 
the phenomenon clearly (Fig. 5). For example, the DOY 140 isolines in 
subregion A were very similar, while for the DOY 110 the difference was 
much more obvious. In addition, horizontal shifts of the DOY 110 iso
lines were also much greater than those of DOY 140 isolines (Fig. 5). The 
small horizontal shifts of the DOY 140 isolines with relatively large 
elevational shifts in subregions C, D, and E were primarily caused by the 
greater slopes at higher elevations. In short, the shapes of GUD isolines 
generally showed greater changes at low and middle elevations. 

The GUD elevational profiles at the start and end of the study period 
for the five subregions are displayed in Fig. 6. In subregions A, B and E, 
we observed increased GUD elevation gradients (≥4.0 days/1000 m) as 
a result of stronger advances in GUD at low and middle elevations. 
Although the GUD gradient across the elevation range increased by only 
4.0 days/1000 m in subregion A, the shape of the GUD profile obviously 
altered. The GUD profiles in subregions A and B above 2400 m and 2800 
m a.s.l. showed almost no change, respectively. For subregions C and D, 
although differences in GUD changes across elevations were observed, 
the differences were not strong enough to alter the GUD gradients. No 
strong decrease in GUD elevation gradient was found for the five 
subregions. 

3.3. Impacts of LST and precipitation on GUD changes 

The Spearman rank correlation coefficients between GUD and the 
LST variables are provided in Fig. 7. Significant correlations were mostly 
negative. The proportions of significantly negative correlations of LST in 
April were the largest among the three months, followed by LST in 
March. In each month, the spatial patterns of the correlations for day
time and nighttime LST were generally similar, while local spatial 

Fig. 4. Mean elevations of the GUD isolines during the start (2001–2005) and end (2016–2020) of the study period. The underlined labels represent the differences in 
the mean elevations of the GUD isolines between the two periods. 
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differences were observed. For the three different months, the spatial 
patterns were different and showed clear elevation dependence. 
Significantly negative correlations for March tended to occur at lower 
elevations, and for May, the significant correlations generally occurred 
at higher elevations (Fig. 7g). For precipitation, a significantly positive 
correlation was observed in approximately 14.6% of the region (Fig. 8a). 

Fig. 9 presents the spatial distributions of trends in the LST variables 
for the period 2001–2020. Of the six LST variables, LSTNAPR showed the 
largest proportion of significant increase (38.4%), followed by LSTDAPR 
(12.9%). For other LST variables, rarely significant trends were 
observed. Trends in TPJA were also mostly nonsignificant (Fig. 8b). The 
GUD slopes modeled by the six LST variables using linear regression 
models are provided in Table 1. These modeled GUD changes considered 
the sensitivities of GUD to LST changes. LSTNAPR also showed the 
strongest explanatory ability for all subregions, particularly for sub
regions A and B. Furthermore, the spatial pattern of GUD changes 
modeled by LSTNAPR was more consistent with the observed GUD 
changes than that of LSTDAPR (Figs. S2 and S3). These results indicate 
the important role of LSTNAPR in advancing GUD. 

4. Discussion 

4.1. Changes in GUD and its elevational pattern 

We detected changes in MODIS EVI derived GUD across the TM over 
the period 2001–2020. Approximately 13.4% of the region showed a 
significantly earlier trend in GUD (Fig. 2b). Earlier GUD trends were also 
observed in previous studies that used different satellite time series 
datasets and GUD estimation methods (e.g., Dilixiati et al., 2019; Zhang 
et al., 2019; Wu et al., 2021). We found the earlier GUD tended to occur 
at low and middle elevations (approximately 1000–2500 m a.s.l., Fig. 2b 
and Fig. 3). The elevation-dependent GUD changes have apparently led 
to altered elevational patterns of GUD. For most subregions, the GUD 
isolines showed upward shifts with greater shift ranges for the DOY 110 
and 120 isolines, which mainly occurred at low and middle elevations 
(Figs. 4 and 5). Meanwhile, the elevation gradients of GUD increased by 
≥ 4.0 days/1000 m in three subregions (Fig. 6). A number of studies 
have reported stronger change rates of spring phenology at higher ele
vations, for example, in the European Alps (Vitasse et al., 2018) and the 

Fig. 5. GUD isolines for days of year (DOY) 110 and 140 at the start and end of the study period over the five subregions.  
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Qinghai-Tibet Plateau (Piao et al., 2011). Stronger advance of spring at 
higher elevations can result in decreased phenology gradient (e.g., 
Vitasse et al., 2018; Dai et al., 2021). Using GUD estimated from the 
GIMMS3g NDVI, Gao et al. (2019) showed that in addition to decreased 
elevation gradient, increased elevation gradient caused by greater 
changes at lower elevations was also a widespread GUD change mode 
over the Northern Hemisphere temperate region. Increase in GUD 
gradient in the TM was the case of this mode. 

The elevation dependence of GUD changes across the TM may be 
primarily caused by warming in April. First, the negative correlations 
between GUD and LST variables were elevation dependent. At low and 
middle elevations, GUD variations were more correlated with LST in 
March and April (Fig. 7). This is consistent with the concept of preseason 
temperature. GUD occurs later at higher elevations, and the timing of 
preseason is also later. Meanwhile, the negative responses of GUD to 
spring LST were in line with previous studies using air temperature 
(Kariyeva and van Leeuwen, 2011; Zhang et al., 2019). In terms of 
daytime and nighttime temperature, we revealed generally similar 
spatial patterns of the correlations for each month, although there were 
some local spatial differences (Fig. 7). Using climate data observed from 
weather stations, Li et al. (2021a) also revealed similar correlations 
between GUD and minimum and maximum air temperature of alpine 
grasslands in Xinjiang, China, which covers part of the TM. Second, large 
areas of significant increase in LST were only observed in April, espe
cially at nighttime. The effects of nighttime and daytime warming in 
April were also supported by the modeled GUD changes (Table 1, 
Figs. S2 and S3). Although the modeled GUD changes were smaller than 
the observed GUD changes, LSTNAPR remained the most responsible LST 
variable for the earlier GUD. The uncertainties may be caused by the 
following issues: (1) the simple linear regression models cannot explain 
the possible nonlinear responses of GUD to LST variations, and (2) the 
MOD11A2 daytime and nighttime LST may not be the optimal LST 
metrics to model GUD due to the local solar time of the Terra/MODIS 
sensor observations. On the other hand, TPJA may not be the major 
factor directly driving earlier GUD across the TM. 

4.2. Implications of the altered GUD elevational pattern 

The changed GUD elevational pattern has implications for sustain
able rangeland management. Rangeland degradation has been one of the 
major environmental issues restraining sustainable development over 
the TM for decades (Ludi, 2003; Hu, 2004; Zhumanova et al., 2018). 
Rest grazing during vegetation greenup periods has been proven to be an 
effective scheme for restoring rangelands (Li et al., 2017; Fedrigo et al., 
2018). In the TM, spring and summer pastures are mainly located at low 
and middle elevations (Hu, 2004; Liao et al., 2014a). The earlier GUD at 
low and middle elevations and the changed elevational pattern of GUD 
provide valuable information for adjusting the periods of rest grazing. 

Many significantly earlier GUDs occurred around the lower edge of 
the forest belt (Fig. S1), a typical forest-grassland ecotone with probably 
high species richness due to the edge effect. The lower edge of the forest 
belt may be a hotspot of biodiversity changes for species sensitive to 
spring vegetation phenology. For example, the major habitats of Cervus 
elaphus songaricus, a typical large herbivore in the TM, are forest and 
steppe (Hu, 2004). The strong upward shifts of GUD isolines at low and 
middle elevations may extend the spatial distributions of some herbivore 
species in spring due to warmer environments and more food (Merkle 
et al., 2016). In addition, these changing temperature and vegetation 
phenology may also reduce the habit suitability of some species due to 
altered species interactions (Plard et al., 2014). 

4.3. Limitations 

We revealed strong impacts of spring LST on GUD trends across the 
TM. Previous studies have shown positive correlations between GUD 
and the end date of snow cover (EDSC) in the European alpines (Xie 
et al., 2021) and the Qinghai-Tibet Plateau (Wang et al., 2018). For the 
TM, interannual variations in EDSC during the last two decades were 
controlled more by spring temperature than by precipitation (Li et al., 
2020; Wang et al., 2021). The observed impacts of LST on GUD in this 
study may also contain the contribution of snowmelt-induced soil 
moisture variations (Fu et al., 2020). The complex mechanisms of the 

Fig. 6. Elevational profiles of GUD for the start and end of the study period and the differences between them. (a), (b) Subregion A, (c) (d) subregion B, (e) (f) 
subregion C, (g) (h) subregion D, (i) (j) subregion E. (k) Comparison of GUD elevation gradients between the start and the end of the study period. The error bars 
represent one standard deviation. 
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Fig. 7. Spearman correlation coefficients between interannual variations in GUD and land surface temperature (LST) variables (a-f), and box-whisker chart of 
elevation for pixels showing significantly negative correlations between GUD and LST variables (g). 

Fig. 8. (a) Spearman correlation coefficients between interannual variations in GUD and total precipitation during January to April (TPJA), and (b) trends in TPJA 
across the TM during 2001–2020. 
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impacts of temperature, precipitation, and snow melt on GUD in this 
region require further investigation. 

There should be strong mixed pixel effects around the forest- 
grassland ecotone located at the middle elevations of the TM, as grass
lands tend to be located on sunny slopes in such regions and the re
sponses of grassland and forest patches to climate variations within a 
coarse resolution pixel should be different. Furthermore, aspects can 
also affect the relationships between GUD and climate factors in the TM 
within land cover types (Tomaszewska et al., 2020). Although there 
remain uncertainties, we revealed different contribution between the 
nighttime and daytime spring LST to the GUD changes. Multiscale an
alyses integrating coarse, median, and fine spatial resolution satellite 
data (e.g., de Beurs et al., 2009) are needed to further elucidate LSP 
variations and the associated drivers for the TM. 

5. Conclusions 

Changes in GUD across the TM over 2001–2020 were characterized 
using MODIS time series data. Approximately 13.4% of the region 
experienced significant trends toward earlier GUD. These earlier GUD 
trends were generally dependent on elevation, i.e., they tended to occur 
at low and middle elevations (approximately 1000–2500 m a.s.l.). The 
elevation-dependent GUD changes induced upward shifts of GUD iso
lines for most subregions. Meanwhile, increased GUD elevation gradi
ents were observed in three subregions. The spatial pattern of GUD 
changes may be primarily induced by the warming land surface in April, 
and particularly induced by nighttime warming. The results provide 
references for the adjustment of seasonal grazing schemes in the context 
of combating rangeland degradation. Additionally, the changed eleva
tional pattern of GUD may affect the seasonal distribution of some 
wildlife species across elevations. Multiscale satellite-based analyses are 

Fig. 9. Trends in the six LST variables during 2001–2020.  

Table 1 
Average GUD changes (days/year) modeled by the LST variables for different regions. The statistics were computed using only pixels with significant advance in the 
satellite observed GUD.  

Region Observed LSTDMAR LSTNMAR LSTDAPR LSTNAPR LSTDMAY LSTNMAY 

TM  − 0.90  − 0.11  − 0.09  − 0.20  − 0.38  − 0.08  − 0.09 
A  − 0.89  − 0.02  − 0.03  − 0.26  − 0.38  0.01  − 0.03 
B  − 0.93  − 0.17  − 0.11  − 0.32  − 0.52  − 0.07  − 0.15 
C  − 0.87  − 0.13  − 0.07  − 0.31  − 0.30  − 0.07  − 0.11 
D  − 0.88  − 0.07  − 0.05  − 0.11  − 0.24  − 0.09  − 0.07 
E  − 0.85  − 0.17  − 0.09  − 0.25  − 0.34  − 0.06  − 0.11  
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expected to provide new insights into the LSP variations over the TM. 
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