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Abstract: Temporally continuous daily actual evapotranspiration (ET) data play a critical role in water
resource management in arid areas. As a typical remotely sensed land surface temperature (LST)-based
ET model, the surface temperature-vegetation index (Ts-VI) triangle model provides direct monitoring
of ET, but these estimates are temporally discontinuous due to cloud contamination. In this work,
we present a gap-filling algorithm (TSVI_DNN) using a deep neural network (DNN) with the Ts-VI
triangle model to obtain temporally continuous daily actual ET at regional scale. The TSVI_DNN
model is evaluated against in situ measurements in an arid area of China during 2009–2011 and shows
good agreement with eddy covariance (EC) observations. The temporal coverage was improved from
16.1% with the original Ts-VI tringle model to 67.1% with the TSVI_DNN model. The correlation
coefficient (R), root mean square error (RMSE), bias, and mean absolute difference (MAD) are 0.9,
0.86 mm d−1, −0.16 mm d−1, and 0.65 mm d−1, respectively. When compared with the National
Aeronautics and Space Administration (NASA) official MOD16 version 6 ET product, estimates of ET
using TSVI_DNN are improved by approximately 49.2%. The method presented here can potentially
contribute to enhanced water resource management in arid areas, especially under climate change.
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1. Introduction

Evapotranspiration (ET) is a critical component of the water cycle and water balance because
it links a number of ecological and hydrological processes [1]. In arid areas, actual ET is a vital
consumptive use of water derived from precipitation and irrigation, thereby affecting crop yield [2].
Hence, actual ET is a key measurement for irrigation programs, particularly where there is insufficient
precipitation to meet crop growth requirements [3,4]. However, as a result of increased irrigation,
drinking water demands, and urban water usage, groundwater levels have decreased significantly
through over-pumping [5–7]. To improve both water use efficiency and the level of water resource
management to balance these different water demands, it is necessary to obtain temporally continuous
daily actual ET data to more accurately calculate total water consumption.

The surface temperature-vegetation index (Ts-VI) model is a typical remotely sensed land surface
temperature (LST)-based ET model [8]. It depends primarily on LST and is presently most applicable for
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providing direct, accurate estimates of ET in arid and semi-arid areas o regional scales. Process-based
models (e.g., the Penman-Monteith model [9]) have poor performance due to their lack of reliable root
zone soil moisture and use of a less-than-suitable surrogate to calculate canopy conductance [10,11].
When compared with surface energy balance models (e.g., Surface Energy Balance Algorithm for
Land (SEBAL) [12] and Surface Energy Balance System (SEBS) [13]), the Ts-VI triangle model shows
more flexibility, relying mainly on the feature space shape constructed by the scatter plot of LST and
a vegetation index (e.g., Normalized Difference Vegetation Index (NDVI)). It is then able to estimate ET
directly using the resulting evaporative fraction and does not need to make the complex corrections
required when replacing aerodynamic temperature by LST [13,14]. In addition, by taking advantage of
the spatial variability in LST and its relationship with VI, the Ts-VI triangle model reduces its sensitivity
to LST retrieval errors. Previous studies have shown that the accuracy of the Ts-VI triangle model is
approximately 1 mm d−1 or less [15,16].

However, like most LST-based ET models, the Ts-VI triangle model is constrained to working
only under clear-sky conditions, leaving a number of gaps in the estimates of ET and resulting in
discontinuous data because of the high sensitivity of LST to clouds [11]. Various attempts have been
made to reduce the effect of clouds. For instance, Zhu [17] proposed a ‘universal Ts-VI triangle method’
to obtain ET under all clear-sky conditions, resolving the issue of there being too few pixels in the
feature space by combining the ‘time domain triangle method’ and the ‘space domain triangle method’.
However, this method requires two steps to get from once daily remote sensing measurements to
temporally continuous daily ET. These steps include scaling instantaneous observations from the
Ts-VI model into daily ET and filling gaps to create continuous daily estimates. Previous studies
focused mainly on the first step, and at least five methods have been developed to scale instantaneous
observations from the Ts-VI model into daily ET estimates [18]. These methods include the evaporative
fraction method [19], the incoming solar radiation method [20], and the reference ET fraction method [21].
These methods require stable weather conditions to reduce uncertainty. There have also been studies
regarding gap-filling methods to improve LST-based ET estimation, such as the moving window
averaged Bowen ratio and available water running pools [22–24]. Considering the number of previous
studies that have focused on scaling instantaneous estimates into daily ET and the true demand
for temporally continuous daily ET in water resource management, this study focuses primarily
on how to obtain temporally continuous daily ET from daily ET estimates that occur only under
clear-sky conditions.

The traditional machine learning method has been examined, with the goal of improving
performance in filling gaps in flux tower observation-based regional ET and potential ET [24–26].
As a data-driven method, an artificial neural network has the potential to be used to obtain temporally
continuous ET based on limited ET estimates from the Ts-VI triangle model [27]. Meanwhile, the deep
neural network (DNN), characterized by having additional hidden layers, provides greater ability than
a traditional shallow neural network [28] to find the complex relationship between ET and reference
data. DNNs have been widely used and have shown outstanding performance in water science studies
to solve traditionally difficult problems, such as predictions of soil moisture and improved quality for
satellite precipitation products [29–31].

The main objective of this study, therefore, is to develop a gap-filling algorithm using DNN with
the Ts-VI triangle model to obtain temporally continuous daily actual ET by overcoming problems
with cloud contamination and testing the resulting model in an arid area of China.

2. Materials and Methods

2.1. Study Area and In Situ Measurements

The study area is an agricultural region located in the middle reaches of the Heihe River basin of
China (Figure 1a) because it is a typical arid area with an annual precipitation of about 150 mm. It lies in
an area that ranges from 38.5◦~ 40.5◦N and 98◦~101◦E with elevations from 1200 to 1700 m. The primary
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crop is spring maize, which grows well—the result of at least five irrigation events every year. There
are more than ten eddy covariance (EC) stations in the area with a footprint of 200-300 m. In addition
to EC data, there are in situ data collected from the Watershed Allied Telemetry Experimental Research
(WATER) [20] from 2008. In this work, two in situ datasets were used (Figure 1b): (1) a three-year EC
observation dataset at the Yingke station (YK), and (2) an EC network having six EC stations with
measurements taken during May-September 2012. Daily ET was aggregated from 30-min observations
after removing the days having gaps due to rainfall and instrument malfunctions. These datasets were
provided by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn) [32–34].
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Figure 1. Study area and location of eddy covariance (EC) stations. (a) A land cover map of the study
area; (b) the location of EC stations on the Normalized Difference Vegetation Index (NDVI) map (DOY
= 192). YK = Yingke station.

2.2. Data

Thirteen remote sensing and meteorological forcing datasets were used in this study (Table 1).
While LST and NDVI were used in the Ts-VI triangle model, NDVI, albedo, surface soil moisture, wind
speed (WS), air temperature (AT), relative humidity (RH), air pressure (AP), downward shortwave
radiation (DSR), and downward longwave radiation (DLR) were used in DNN training. Precipitation
and land cover data were used in data pre-processing, and MOD16 ET was used for comparison.
Details of these datasets are given as follows.

http://data.tpdc.ac.cn
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Table 1. Remotely sensed and meteorological forcing datasets used in this study. The variables in
regular font are used in the Ts-VI triangle model, while the variables in italics are used in the deep
neural network (DNN). Where LST: land surface temperature; NDVI: normalized difference vegetation
index; SM: soil moisture; WS: wind speed; AT: air temperature; RH: relative humidity; AP: air pressure;
DSR: downward shortwave radiation; DLR: downward longwave radiation; ET: evapotranspiration.

Variable Source Spatial Resolution Temporal Resolution Time Available

LST MOD11A1 1 km 1-day 2009–2012
NDVI MOD13A2 1 km 8-day 2009–2012
Albedo GLASS 1 km 8-day 2009–2012

SM ESA ECV 0.25◦ 1-day 2009–2012
WS DAMCTM 0.1◦ 3-h 2009–2012
AT DAMCTM 0.1◦ 3-h 2009–2012
RH DAMCTM 0.1◦ 3-h 2009–2012
AP DAMCTM 0.1◦ 3-h 2009–2012

DSR DAMCTM 0.1◦ 3-h 2009–2012
DLR DAMCTM 0.1◦ 3-h 2009–2012
ET MOD16A2 500 m 8-day 2009–2011

Land cover MOD12Q 1 km 1-year 2009
Precipitation DAMCTM 0.1◦ 3-h 2009–2012

2.2.1. Remote Sensing Data

Moderate Resolution Imaging Spectroradiometer (MODIS), LST (MOD11A1), NDVI (MOD13A2)
and ET (MOD16A2) data were collected from the National Aeronautics and Space Administration
(NASA) Land Processes Distributed Active Center (LP DAAC) (https://modis.gsfc.nasa.gov/) [35].
We used high-quality MODIS LST products, as determined from the quality control files while also
removing images which had valid data less than 90% of the study area or when precipitation was
greater than 1 mm d−1. Gap-free NDVI products with a temporal resolution of 1-day were obtained
using Harmonic Analysis of Time Series (HANTS) [27,36]. The LST and NDVI are two main parameters
used in the Ts-VI triangle model.

Albedo data related to net radiation are a component of the Global LAnd Surface Satellite (GLASS)
products generated by the inquiry team at Beijing Normal University. The dataset provides gap-free
albedo data with a spatial resolution of 1 km and a temporal resolution of 8-days. These data were
retrieved from the MODIS data using an angular bin algorithm and a statistics-based temporal filtering
method [37].

The MOD16A2 ET version 6 product was utilized as a benchmark to compare with our results.
This product is an 8-day composite ET dataset produced at a 500-m spatial resolution. The MOD16 ET
algorithm is based on the Penman-Monteith model driven by daily meteorological forcing data from
MERRA GMAO at about 0.5◦ × 0.6◦ resolution and MODIS land surface parameters, including NDVI,
LAI (leaf area index), albedo, and land cover [10,38].

The surface soil moisture product, an Essential Climate Variable (ECV) combined product
from version V0.44 from European Space Agency (ESA) (https://www.esa-soilmoisture-cci.org/), was
generated by merging active microwave, passive microwave, and modelled soil moisture data [39,40].

All of these datasets were re-projected and resampled to 0.01◦ and, with the exception of MOD16
data, to 1-day using a bilinear resampling method.

2.2.2. Meteorological Forcing Data

Meteorological forcing data, including WS, AT, RH, precipitation, AP, DSR, and DLR were
provided by the Data Assimilation and Modeling Center for Tibetan Multi-spheres (DAMCTM),
Institute of Tibetan Plateau Research, Chinese Academy of Sciences [41,42], with a spatial resolution
of 0.1◦ and a temporal resolution of 3 h. Station data from the China Meteorological Administration

https://modis.gsfc.nasa.gov/
https://www.esa-soilmoisture-cci.org/
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(CMA), TRMM precipitation (3B42), GEWEX-SRB radiation, and GLDAS data were used to produce
this dataset.

The spatial resolution of this dataset was downscaled to 0.01◦ using a semi-empirical relationship
and a digital elevation model (DEM) [43,44], with the exception of precipitation and wind speed, which
were downscaled using a bilinear resampling method. All of the data were then aggregated temporally
from 3 h to 1 day.

The final temporally continuous reference dataset with a resolution of 0.01◦ and temporal resolution
of 1 day were obtained to be used to train the DNN.

2.3. Methods

The workflow for this study (Figure 2) is as follows. First, obtain daily ET estimates from the Ts-VI
triangle model under clear-sky conditions. Second, train the DNN using the ET estimates from step 1.
Finally, obtaining temporally continuous daily actual ET by running the trained DNN with all-sky
reference data, including remote sensing information and meteorological forcing data. A correlation
coefficient (R), root mean square error (RMSE), bias, and mean absolute difference (MAD) were used
as the error metric.
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Figure 2. Flowchart for obtaining temporal continuous daily actual evapotranspiration based on the
Ts-VI triangle method and the deep the neural network. Where WS: wind speed; AT: air temperature;
RH: relative humidity; AP: air pressure; DSR: downward shortwave radiation; DLR: downward
longwave radiation; SM: soil moisture; Ts-VI: surface temperature-vegetation index; DNN: deep
neural network.

2.3.1. Daily ET Estimates from the TS-VI Triangle Model under Clear-sky Conditions

The relationship between LST and VI can be used to describe the evaporative ability of the land
surface based on the assumption that LST varies for a given VI based primarily on soil moisture
availability rather than atmospheric forcing differences over a relatively flat area. Hence, a Ts-VI
triangular shape can be obtained when there are a number of pixels over a flat area formed by two
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physical bounds: the upper decreasing dry and lower horizontal wet edges, representing zero ET and
potential ET, respectively [8,15,45]. In this study, NDVI was replaced by the fraction of vegetation (Fc),
which appears to be more representative of the relative proportionality between soil and vegetation
within a pixel [45].

Fc = (NDVI−NDVImin)/(NDVImax −NDVImin) (1)

where NDVImin and NDVImax are the minimum and maximum NDVI, which are assumed to be 0.9
and 0.1, respectively, in this work based on the MOD13A2 data.

Using the Ts-VI triangle model consisting of a spatial relationship between LST and Fc,
the Priestley–Taylor equation was extended by Jiang et al. [8], such that the latent heat flux (λET) could
be calculated as follows:

λET = EF(Rn,ins −Gins) (2)

EF = ∅ ∆
∆ + γ

(3)

where EF is the evaporation fraction (dimensionless); λ is the latent heat of vaporization; ∅ is
a combined-effect parameter and is similar to α in the Priestley–Taylor equation ranging from 0 to 1.26;
∆ is the slope between saturation vapor pressure and air temperature (kPa ◦C−1); γ is psychometric
constant (kPa ◦C−1); and Rn, ins and Gins are instantaneous net radiation (W m−2) and soil heat flux
(W m−2), respectively.

The EF is obtained from the Ts-VI triangle method using the input LST as a surrogate for air
temperature, while ∅ is obtained from Ts–VI triangle space using a two-step interpolation scheme [31].
Assuming that EF is constant during a single day under clear-sky conditions, daily ET could be
estimated using the following equation [46]:

ET = EF
(
Rn,daily −Gdaily

)
/λ (4)

where Rn,daily is daily net radiation (W m−2) and Gdaily is daily soil heat flux (W m−2; normally assumed
negligible) [4].

In this work, a Ts–VI triangle model with enhanced edge determination was adopted to calculate
EF [45]. This model is highly suitable for arid areas where the wet edge is difficult to find in images
due to the surface’s high evaporative capacity.

2.3.2. Training DNN Using ET Estimates from the Ts-VI Triangle Model under Clear-Sky Conditions

A four-layer, fully connected DNN (9-128-128-1) was employed (Figure 3). The input layer
includes nine inputs: NDVI, Albedo, WS, AT, RH, AP, DSR, LSR, and SM. The two hidden layers have
128 neurons each, which effectively use GPU to accelerate calculations. The output layer has a single
neuron representing daily ET. To reduce the risk of overfitting, we limited the number of hidden layers
to two and adopted a regularization term for the weights to the loss function. Meanwhile, about 20% of
the data were randomly selected as validation data. These steps eliminated the need for dropout, since
our experiments showed that there was little risk of overfitting. Training is terminated after 1000 echoes
are trained. The root mean squared error (RMSE) is taken as the cost function. The learning rate is set
to 0.001, with a decreasing factor of 0.9 every 200 echoes. The activation function is based on rectified
linear units (Relu), which preserves information about relative intensities as the information travels
through multiple layers [47]. The optimization scheme ‘Adam’ was used to improve computational
efficiency and reduce memory requirements, as it is well suited to problems that have large datasets [48].
Three years of reference data over the entire study area were used to train the DNN.

Daily ET estimates from the TS-VI triangle method under clear-sky conditions were used in
the DNN training process. Unlike gap-filling methods, quality is more important than quantity for
machine learning. Hence, optimizing application conditions of the Ts-VI triangle model is critical in
improving the DNN performance (Section 2.2.1), especially for its generalization ability.
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2.3.3. Obtaining Temporally Continuous Daily ET by Driving the Trained DNN Using Reference Data

In the final step, the trained DNN is driven by all-sky temporally continuous daily reference input
data. However, since the Ts-VI triangle model is not suitable for soil that is frozen (the daily average air
temperature less than 0 ◦C) or covered with snow (albedo greater than 0.3) [49], we limited predictions
to days when the soil was neither frozen nor covered with snow. To maintain consistency in the results,
the estimates of ET from the original Ts-VI model were discarded.

3. Results

A model named TSVI_DNN was obtained by training the DNN using ET estimates from the
original Ts-VI triangle model (hereafter labelled TSVI_Ori) for 2009–2011. It is obvious that the
performance of the TSVI_DNN model is affected by the accuracy of the TSVI_Ori model, specifically by
high-quality ET outputs from the TSVI_Ori model. As a result, we first validated the quality-controlled
ET estimates from the TSVI_Ori model and then evaluated the consistency between the TSVI_DNN and
TSVI_Ori models. Next, performance was evaluated by a direct comparison of TSVI_DNN estimates
to in situ measurements of ET and an intercomparison with the NASA official MOD16 ET product,
which was used as a benchmark. To focus on the objective, only daily results were validated. These
results contain uncertainty from both the Ts-VI triangle model and scale expansion from instantaneous
to daily estimates.

3.1. Comparison with the Original Ts-VI Triangle Model

Using three years of satellite observations over the study area, there were sufficient samples to train
the DNN. Strict quality control was used to estimate ET using the TSVI_Ori model. Considering that
the quality of the ET estimates from TSVI_Ori is critical in the DNN training process, we first evaluated
it at YK station using three years of in situ measurements. Figure 4a reveals that a comparison of ET
estimates from TSVI_Ori with in situ measurements is very close to 1:1 line, where an R of 0.9 (P < 0.01)
indicates the model’s ability to capture the high variability in the data. Accuracy was acceptable with
an RMSE of 0.94 mm d−1 and an MAD of 0.71 mm d−1. These results are comparable to those from
previous studies of the Ts-VI triangle model [45]. Since bias was low, there was little underestimation
of ET. When using satellite imagery there are other important issues to consider, such as their coarser
spatial resolution, overpass frequency, the possibility of cloud cover presence at overpass time (imagery
delivery time). These issues sometimes limit the effectiveness of the aforementioned methods for
mapping daily ET at a very high resolution (crop fields) and on a regular basis for near real-time
irrigation scheduling [21].

Approximately 6.8× 105 high-quality ET estimates were obtained from the TSVI_Ori model for
training the DNN, and 1.5 × 105 were randomly selected as validation data. ET estimates from the
TSVI_DNN were compared to those from the TSVI_Ori ET during 2009–2011. As shown in Figure 4b,
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ET estimates from TSVI_DNN are highly consistent with estimates from TSVI_Ori at the YK station.
Regional performance is also shown in Figure 5, revealing that, for the most part, the ET estimates from
TSVI_DNN are highly consistent with the ET estimates from TSVI_Ori. The greatest difference between
them is less than 1 mm d−1. We should state that the DNN configuration, to avoid overfitting, will
not guarantee that the ET estimates from TSVI_DNN are the same as the ET estimates from TSVI_Ori,
even though the traditional DNN has this ability. For example, the difference between outputs from
the two models was relatively large when the ET estimates from TSVI_Ori were extremely high. This
also indicates that there is a risk of missing extreme predictions using the TSVI_DNN model, which is
a focus of future work.
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Figure 4. Comparison of evapotranspiration (ET) estimates from the TSVI_DNN and TSVI_Ori models
at the YK station during 2009–2011. (a) A scatterplot of ET estimates from the TSVI_Ori model vs.
measured ET; (b) a scatterplot of ET estimates from TSVI_Ori vs. TSVI_DNN.
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Figure 5. Comparison of ET estimates from the TSVI_DNN and TSVI_Ori model on the regional scale.
(a) A scatterplot of regional ET estimates from TSVI_DNN vs. those from TSVI_Ori; (b) a histogram of
the difference between ET estimates from the TSVI_DNN and TSVI_Ori models.
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The temporal coverage was improved from 16.1% with TSVI_Ori model to 67.1% with TSVI_DNN
model during 2009–2011. Regardless of the surface covered by snow or the soil being frozen, TSVI_DNN
is temporally continuous at the daily scale.

To show the spatial consistency between the TSVI_DNN and TSVI_Ori models, ET images on DOY
204 in 2009 are shown for both of them, for the both images had value in the growing season (Figure 6).
The spatial pattern of ET estimates from the TSVI_DNN model was similar to that of TSVI_Ori, with
ET decreasing from southeast to northwest. This ET spatial pattern is also consistent with those of
previous studies [50–52]. In summary, the performance of both models during the period of overlap
was highly consistent from point to regional scales, indicating that the DNN may have a high accuracy.
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3.2. Comparison with MOD16 ET Product and In Situ Measurements

Although the TSVI_DNN model performs similarly to the TSVI_Ori model, its performance
should also be evaluated against additional data. We first evaluated the TSVI_DNN against in situ
measurements taken at the YK station during 2009–2011. The results show good agreement (Figure 7)
between the results from the TSVI_DNN model and measured ET, where an R value of 0.9 (P < 0.01)
indicates the model’s ability to capture high variability in the data. The RMSE, bias, and MAD are
0.86 mm d−1, −0.16 mm d−1, and 0.65 mm d−1, respectively, further showing high accuracy. These
results are comparable to those between TSVI_DNN and TSVI_Ori. Compared with Figure 4a, these
results have 562 samples, which is more than the 147 samples of TSVI_Ori. Considering that water
resource management is always on the monthly or yearly scale, the bias is low enough to be compared
with the water demand for maize of 4.3 mm d−1 [53]. Hence, it is reasonable to say that the TSVI_DNN
model could be used in water resource management.

To further verify the results from our method, we chose to verify our results against the NASA
official MOD16 ET version 6 product. Results from previous studies indicate that MOD16 ET products
have varied widely and have shown good performance [10,38]. Hence, we selected it as a benchmark.
The 500-m resolution original MOD16 ET was resampled to 0.01◦ spatial resolution, as mentioned
previously. However, the temporal resolution of MOD16 ET is 8 days, which is longer than the 1-day
estimates from in situ observations and our results. For comparison, we resampled ET estimates from
the TSVI_DNN model and the in situ measurements of ET from 1 day to 8 days.

The time series of ET estimates from TSVI_DNN and MOD16 ET against in situ measured ET are
shown in Figure 8. Both estimates can capture the annual variation shown by in situ ET measurements.
However, MOD16 ET seriously underestimated measured values, while TSVI_DNN greatly reduced this
underestimation. As shown in Table 2, when compared with MOD16 ET, the TSVI_DNN model reduced
the RMSE with in situ measurements from 1.30 to 0.66 mm d−1, the bias from−0.89 to−0.23 mm d−1, and
the MAD from 1.02 to 0.5 mm d−1. At the same time, R increased from 0.84 to 0.93. Thus, the accuracy
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(RMSE) of TSVI_DNN improved estimated ET by 49.2%, while also providing estimates closer to
actual measurements, thereby reducing underestimation. We found that the latest version of MOD16
is of higher quality than the previous version (1 km, 8 day), which greatly underestimated ET at the
YK station (data not shown) [52]. However, our results also show that there is still a lot of room for
improvement in the MOD16 ET product.

As the scatterplot of regional ET estimates from TSVI_DNN vs. those from MODI 16 during
2009–2011 shows, the TSVI_DNN has a high correlation with the MOD 16 ET (R = 0.74, P < 0.01)
(Figure 9a). However, the MOD16 underestimated ET more severely by about 1.06 mm d−1 than
TSVI_DNN (Figure 9b). As an example, shown in Figure 9c,d, the spatial pattern of ET estimates from
TSVI_DNN is similar to those from MOD16, where results also decreased from southeast to northwest.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 
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Table 2. Error metrics of ET estimates from the TSVI_DNN model and MOD16 ET product as compared
to in situ measurements at the YK station during 2009–2011, including R (correlation coefficient), RMSE
(root mean square error, mm d−1), bias (mean bias, mm d−1), MAD (Mean Absolute Deviation, mm d−1),
and N (the number of samples).

Product R RMSE Bias MAD N

TSVI_DNN 0.93 0.66 −0.23 0.50 49
MOD 16 0.84 1.30 −0.89 1.02 52Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 18 
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Figure 9. Regional difference and spatial pattern of ET estimates from TSVI_DNN and MOD16 ET.
(a) A scatterplot of regional ET estimates from TSVI_DNN vs. those from MODI 16 during 2009–2011;
(b) a histogram of the difference between ET estimates from the TSVI_DNN model and MOD 16 during
2009–2011. (c) and (d) are the spatial pattern of ET estimates from the TSVI_DNN model and from the
MOD16 on DOY 201~208 in 2009, respectively.

Ideally, we expect that the TSVI_DNN model has a better extensible performance at different
spatial and temporal scales. We therefore tested the TSVI_DNN model trained using 2009–2011 data to
predict ET in 2012 and found that the quality of the variability and spatial pattern is comparable to that
of the TSVI_Ori model (Figure 10). Meanwhile, two different scenarios were tested by training the
TSVI_DNN using 2009–2011 data and predicting ET for 2012 vs. training the model and predicting
ET for 2009–2012, comparing the results with the EC network measurements. Both methods showed
similar results (Table 3) for both RMSE (1.24 vs. 1.20 mm d−1) and bias (−0.74 vs. −0.67 mm d−1).
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These metrics are comparable with the ET estimates from the TSVI_Ori model with an RMSE and bias
of 1.13 mm d−1 and −0.72 mm d−1, respectively.
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4. Discussion

4.1. Advantages of the TSVI_DNN Model

The most significant contribution of the TSVI_DNN model is filling the gaps in the ET estimates
from the TSVI_Ori model using the DNN. It provided an applicable way to obtain temporally
continuous daily ET over the arid area during the soil in unfrozen conditions, and the results show that
the temporal coverage was significantly improved from 16.1% to 67.1% compared with the TSVI_Ori
model. Meanwhile, the spatial pattern of TSVI_DNN is consistent with previous studies for the same
area, which showed that spatial variation is small and ET is always high due to irrigation when using
process-based and LST-based models [50–52].

In arid areas, actual ET is limited by the soil moisture, especially by the root zone soil moisture,
and the irrigation events often introduce additional uncertainty. According to the mechanism of the
TSVI_Ori model, the surface and root zone soil moisture have a great contribution to ET estimates
from the TSVI_Ori model. Hence, the TSVI_DNN model provided a new way to extend the ET with
the contribution of soil moisture to different spatio-temporal scale with the help of DNN. However,
other mechanism models either limited by the coarse resolution of surface soil moisture product or by
a lack of fine-resolution and reliable root zone soil moisture, and using atmospheric vapor pressure
deficit as a surrogate might introduce additional uncertainty due to its low spatial variation [11,54,55].

In addition, the TSVI_DNN model relies on the inputs from remotely sensed and forcing data, but
does not need ground data. This was another main difference from the widely used crop coefficient
based Penman-Monteith method, where the crop coefficient is obtained through field experiment and
varies during vegetation developing stages [56]. Moreover, it is also different from the ground data
driven machine learning methods [24].

What is more, this study used the DNN to establish relationships between daily ET estimates
from the Ts-VI triangle model and reference data and then obtain temporally continuous daily ET by
overcoming the issue of gaps on cloudy days. The DNN has a stronger relationship-mining ability
than more traditional neural networks, especially for large training datasets. When increasing the size
of the training dataset, the established relationship becomes more stable.

4.2. Limitations of the TSVI_DNN Model

A number of limitations of the Ts-VI triangle model should be stated to further improve the
quality of TSVI_DNN in the future. (1) The error in daily ET estimates used as training data from
the Ts-VI triangle model has at least two components: errors in the Ts-VI triangle model and errors
in the scaling/transforming process. In this study, we limited the clear-sky conditions to relative
stable weather based on the quality of LST and precipitation. The total error (RMSE) of the daily ET
estimates of 0.94 mm d−1 suggests that this method was effective. (2) Several factors can reduce the
performance of the Ts-VI triangle model. For example, heavy rainfall on the last day might lead to
an inaccurate determination of the dry and wet edges [45]. Although there are a number of papers
indicating that the coefficient of the P-T equation equals 1.26, values ranging from 1.0 to 1.5 have also
been reported [1,45,57]. (3) There are at least five methods that can be used to transform instantaneous
remote sensing latent heat flux or evaporation observations to daily estimates [18,21]. Most methods,
such as the reference ET-based method, need more instantaneous information, which is difficult to
obtain at satellite overpass time. Hence, in this study, we used the simple EF-based method. Despite
its limitations, the Ts_VI triangle model is a good choice to estimate ET estimation based on results
from a number of published studies. Independent validation in this study also proves that the use of
the Ts_VI triangle model can generate acceptable estimates of daily ET.

Other limitations include the low reliability and coarse resolution forcing data from the global
land model, e.g., GLDAS [58]. In this study, data correction by the weather station observations and
downscaling by empirical methods to improve the spatial resolution to 0.01◦ can reduce this error to
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a degree [42]. This might be a compromise compared with the complex dynamic downscaling method
using the weather research and forecasting model (WRF) at mesoscale [59].

Other LST-based ET model estimates can also be used to train the DNN. For example, the SEBS and
Norman-95 (N95) models are widely used in regional ET estimates using remotely sensed LST [13,60].
They have similar advantages in that both have reasonably favorable accuracy and direct monitoring,
while their disadvantage is in being constrained by clouds because of the sensitivity of LST. Our results
using the Ts-VI triangle model present a satisfactory case. It should be noted that different ET models
may have distinguishable differences. Quality control is critical in this extension of the application,
where quality is more important than the number of datapoints. Meanwhile, DNN still has less ability
to capture extreme values (very high and low ET) than traditional neural networks. Future studies will
explore methods to improve this DNN.

5. Conclusions

LST-based ET models are confronted with difficulties in estimating temporally continuous daily
actual ET. In this study, we developed a gap-filling algorithm using DNN for the Ts-VI triangle model
to obtain temporally continuous daily actual ET in an arid area of China. High-quality discontinuous
daily ET was obtained from the TSVI_Ori ET model under clear-sky condition using high-quality
LST observations. We took advantage of these high-quality ET estimates, along with meteorological
forcing data, to train the DNN. Finally, the trained TSVI_DNN model was used to estimate temporally
continuous daily actual ET at the regional scale in an arid area. We found that: (1) ET estimates from the
TSVI_DNN model showed the ability to capture the high variability in ET with an R of 0.9. The results
were highly accurate with an RMSE of 0.86 mm d−1 and an MAD of 0.65 mm d−1. The bias towards
underestimation was low (with a bias of −0.16 mm d−1); (2) the ET estimates from TSVI_DNN are
highly consistent with the ET estimates from the TSVI_Ori model, although it was necessary to avoid
the overfitting of the DNN by adopting methods designed for that task; (3) compared with the NASA
official MOD16 ET version 6 product, the accuracy (RMSE) of TSVI_DNN improved estimates by 49.2%.
The in situ comparison with measurements and intercomparison with the MOD16 product showed that
TSVI_DNN demonstrated outstanding performance. In summary, due to the high non-stationarity and
non-linearity characteristics of the ET process, the DNN provides a practical alternative to estimating
temporally continuous daily ET based on the LST-based ET model.
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