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Abstract: Remote sensing technology provides a feasible option for early prediction for wheat
Fusarium head blight (FHB). This study presents a methodology for the dynamic prediction of this
classic meteorological crop disease. Host and habitat conditions were comprehensively considered as
inputs of the FHB prediction model, and the advantages, accuracy, and generalization ability of the
model were evaluated. Firstly, multi-source satellite images were used to predict growth stages and
to obtain remote sensing features, then weather features around the predicted stages were extracted.
Then, with changes in the inputting features, the severity of FHB was dynamically predicted on
February 18, March 6, April 23, and May 9, 2017. Compared to the results obtained by the Logistic
model, the prediction with the Relevance Vector Machine performed better, with the overall accuracy
on these four dates as 0.71, 0.78, 0.85, and 0.93, and with the area under the receiver operating
characteristic curve as 0.66, 0.67, 0.72, and 0.75. Additionally, compared with the prediction with
only one factor, the integration of multiple factors was more accurate. The results showed that when
the date of the remote sensing features was closer to the heading or flowering stage, the prediction
was more accurate, especially in severe areas. Though the habitat conditions were suitable for FHB,
the infection can be inhibited when the host’s growth meets certain requirements.

Keywords: wheat; fusarium head blight; dynamic prediction; remote sensing; multiple factors

1. Introduction

Fusarium head blight (FHB), also known as scab, is an economically devastating disease of wheat
caused by Fusarium graminearum (Gibberella zeae) [1]. In the past decade, China has witnessed the
aggravation of FHB, both in scope and severity, causing significant economic losses in wheat [2,3].
Wheat FHB frequently occurs in the middle and lower reaches of the Yangtze River and has gradually
spread to the northwest, covering more than 10 major agricultural areas. What is worse, infected wheat
will produce mycotoxins, notably deoxynivalenol (DON) and zearalenone (ZEA), which may lead
to acute poisoning symptoms and physical damage [4-6]. Given the frequent occurrences and rapid
development of FHB epidemics, the prediction for wheat FHB in a precise time and space scale is
of great significance, and provides reliable and timely management advice for wheat producers and
valuable time for food operators or processors to properly detect and manage damaged grain.
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There are two main methods to predict wheat FHB. The first is mainly based on a statistical model,
utilizing the relationship between meteorological conditions and the occurrence of FHB. The second
concentrates on the change in spectrum when crops are infected with diseases, describing crop stress
by spectral features extracted from various sensors. Because the appropriate temperature, rainfall,
and relative humidity around wheat are the main factors for the reproduction of the pathogen [7],
a method to judge the severity of disease in the field by combining weather forecast data with
microclimate measurements has been developed [8-10]. Besides this, the change in crop structure and
pigment in the process of the highly specific disease will result in a change in reflectance. Therefore,
as an effective method in object detection over large areas, satellite-based remote sensing technology,
has been widely used in plant disease monitoring or prediction, and diverse vegetation indices (VIs)
have been brought up. For instance, Yudarwati et al. analyzed multi-temporal satellite images to
put forward a vegetation index suitable for monitoring rice bacterial blight. The results showed that
three indexes, Normalized Difference Green/Red Index (NGRDI), Normalized Pigment Chlorophyll
Index (NPCI), and Plant Senescence Reflectance Index (PSRI), had the highest correlation with the
occurrence of bacterial blight, with an R2 0.44, 0.63, and 0.67, respectively [11]. Such methods take
into consideration the habitat or the growth conditions, respectively, during the most susceptible
stages of the crop to the disease, which proved to be useful in disease prediction. Although they have
been applied in practice and are still under continuous refinement, newer prediction algorithms are
proposed. It is crucial to predict disease earlier and more accurately, especially in a more precise
time scale.

Taking all these factors into consideration, in current state of the art research, researchers have
utilized a disease prediction methodology combining habitat and growth conditions, providing an
emerging idea for early disease prediction [12]. For example, Ma et al. used Landsat-8 images to
extract VIs and Land Surface Temperature (LST), and spatially interpolated the daily weather data,
as inputs of the Relevance Vector Machine to predict wheat powdery mildew. The results showed that
the overall accuracy of the model constructed by the combination of multiple data was greater than that
of the model based on only one type of factor [13]. The prediction method of crop disease combining
multiple factors usually considers four key points. The susceptible growth stages of the crop were
mostly based on the records of agrometeorological stations or field investigation to choose the suitable
growth stages of the crop as the study time [14,15]. Growth conditions: collecting the remote sensing
data during the selected stages. VIs and their important trend components in time-series have been
widely used in monitoring plant disease stress [16,17]. Many researchers have inverted crop agronomic
parameters to detect the growth of crops and the structure of landscapes [18,19]. Habitat conditions:
meteorological data have often often used to calculate the indices in a short time range. In addition,
remote sensing data can also be employed in retrieving environmental factors [12,20,21]. The selection
of a suitable prediction model: there has been an increasing number of mathematical models applied
to crop disease prediction, in which machine learning models are widely used [22-24]. The existing
research results show that the comprehensive consideration of multi factors can improve prediction
accuracy. Based on this, we further tested the ability of this kind of method for FHB prediction.

We focused on the dynamic prediction of winter wheat FHB. Important factors leading to the
occurrence and development of FHB, including the host and habitat conditions, were extracted by
multi-source remote sensing and other auxiliary data. High temporal and spatial resolution satellite
images were respectively used to predict the key growth stages of wheat and to obtain remote sensing
features that reflect growth conditions. Meanwhile, habitat conditions were described by weather
features during the predicted stages. Then, we analyzed the performance of the Relevance Vector
Machine for FHB prediction and mapped the prediction results of FHB severity. The dynamic prediction
was realized through inputting features that change with time. Namely, the remote sensing features
will change with the acquiring of satellite-based images on different dates, and the weather features
will change with the accuracy of the meteorological forecast data.
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2. Materials and Methods

2.1. Study Area and Data

Our study was performed in 2017 for Changfeng and Dingyuan County of Anhui Province
(29°41’N-34°38'N, 114°54’E-119°37’E) (Figure 1). The area was located in the lower reaches of the
Yangtze River where the planting area of winter wheat was about 1698 km?, accounting for 35% of the
total area, and the major cultivar was “Yangmai 25”, susceptible to FHB. In this area, both the planting
system and the degree of mechanization were generally unified. The annual accumulated temperature
above 0 °C there is about 5200 °C-5500 °C, and the annual average rainfall is about 960 mm [25].
Because of the influence of the monsoon, the precipitation in spring and summer contributes the
most. With a high planting density; a variety susceptible to FHB; sufficient sources of Gibberella;
and, most importantly, suitable precipitation and temperature conditions, the occurrence of FHB of
winter wheat in this area is relatively serious [26]. According to the records, the frequency of the year
of a pandemic in this region is as high as 57.1% [27]. As preparation for our experiment, the wheat
cultivated areas were classified by the decision tree model, with vegetation indices and characteristics
of the Normalized Difference Vegetation Index (NDVI) curve extracted from time-series Moderate
Resolution Imaging Spectroradiometer (MODIS) images as inputs.
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Figure 1. Study area and samplings.

There are three types of data involved in the study: field survey, satellite images, and meteorological
data. For the collection of the reference data for FHB prediction, a field investigation was carried out
from May 8 to May 9, 2017. The survey included the longitude and latitude of the centers of 45 plots,
and the FHB damage percentage to the wheat ears in each plot. The damage conditions of five 1 X 1 m
ranges in each homogenous plot were investigated, and the average was obtained. We only regarded
those plots with a damage percentage equal to zero as uninfected samples, and 45 groups of field
samples were obtained (Figure 1). As auxiliary data for selecting remote sensing features, a total of 189
sets of canopy hyperspectral data of infected and uninfected wheat were collected in Anhui Province
from April 26 to April 29 and May 8 to May 13. The satellite images contained the level 4 MODIS
global Leaf Area Index (LAI) product MCD15A3H from January to June 2014-2017, and the Landsat-8
(L8) surface reflectance product from January to June 2017, in which four L8 images (February 18,
March 6, April 23, May 9) of Dingyuan and three images (February 18, April 23, May 9) of Changfeng
were obtained. The meteorological data we used included the daily weather data from January to June
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2014-2017 and the agrometeorological data in China. Inverse distance weight interpolation (IDW) was
employed on the daily weather indices for spatial interpolation with a resolution of 30 m.

2.2. Dynamic Remote Sensing Prediction for Wheat FHB

That situation will be suitable for FHB occurrence when sources of Fusarium graminearum
in the planting area are sufficient and, more essentially, the host and habitat conditions provide a
proper environment for the fungi. Therefore, the host and habitat were synthetically considered.
Multi-source remote sensing data, which have been widely used to detect changes in morphology,
leaf color, and chlorosis of crops [25,28,29], were utilized to obtain host conditions, including growth
stages, with a high time accuracy, and growth conditions in a precise spatial scale. Then, during
the most sensitive stages of crops to FHB-causing fungi, we calculated and selected weather indices
within narrow periods to reflect habitat conditions. With the optimized remote sensing and weather
features as inputs of our prediction model to assess the FHB severity of winter wheat and provide
more accurate guidance for fungicide application decisions, the probability of FHB was dynamically
predicted through the change in the input features (Figure 2).

Host properties Model Construction
FHB Severity Levels
Remote sensing Mapping

features on different %
dates —

Construct the Prediction

Key growth stages
V . extraction and d moc!el n ngle
¥l prediction by satellite ynamically| [ B
i e ‘when features ' Optimized @ Bt
=Y~ =y T I mages changing | parameters -
Habitat conditions ]
i Weather features in % Model Validation and
: : Comparation
] ditferent windows
A

Figure 2. Flow chart of dynamic remote sensing prediction for wheat FHB.
2.2.1. Host and Habitat Conditions Extraction

Comprehensively considering the factors that affect the infection of FHB, we predicted the growth
stages, extracted growth, and habitat conditions of crops. The growth stages were predicted through
the accumulated temperature and the crop growth curve obtained from time-series satellite-based
images. The growth conditions were explained by remote sensing features captured regularly. For the
weather features that characterized habitat conditions, the predicted growth stages were identified as
their time references.

Firstly, we predicted the heading and flowering dates in the target year based on the average
accumulated temperature in former years [30]. That is, the MODIS LAI time-series data were used to
extract the green-up and heading dates of winter wheat in past years, and the average accumulated
temperature between the two dates was calculated as the threshold for wheat in the target year
achieving the heading date from green-up. Similarly, 105 °C was taken as the threshold to predict the
flowering date from the heading date [31]. The improved Whittaker smoother [32,33] was chosen to
reconstruct the data on time-series MODIS LAI based on this, the iLAI-Logistic method was utilized
to extract the transition date [34,35]. According to the growth characteristics of winter wheat, green-up
is the stage of rapid greening for leaves, while heading is the best stage of nutritional and reproductive
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growth for the crop, corresponding to the maximum values of the first curvature of cumulative data
and that of the reconstructed data, respectively (Figure 3) [35].
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Figure 3. Extraction of Day of Year (DOY) of green-up and heading. (a) The results of Whittaker
smoother and the accumulation of reconstructed data. (b) The key points on the first curvature curve
and the reconstructed LAI curve.

Wheat FHB usually causes the disease spots on the ear, changing the morphology, leaf color,
and chlorosis, which leads to the optics being altered. Therefore, for the selection of remote sensing
features to describe crop growth conditions, we mainly considered those who can reflect the nutrition
and disease stress of crops. Fourteen spectral indicators, including 4 original bands (Blue, Green, Red,
and NIR) and 10 vegetation indexes (VIs) (including Enhanced Vegetation Index (EVI), Normalized
Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Simple
Ratio (SR), Triangular Vegetation Index (TVI), Optimized Soil-Adjusted Vegetation Index (OSAVI),
Modified Simple Ratio (MSR), Renormalized Difference Vegetation Index (RDVI), Plant Senescence
Reflectance Index (PSRI), and Difference Vegetation Index (DVI)) were selected. Among them,
for instance, Red and NIR were the bands highly correlated to FHB [25]; PSRI can well reflect the
stress of crop canopy [19]. Besides this, NDVI and GNDVI can be used to quantify vegetation
greenness or assess photosynthetic activity; TVI describes the radiant energy absorbed by the pigment.
On this basis, OSAVI increased the sensitivity to vegetation by using a standard value for the canopy
background adjustment, and RDVI increased the sensitivity to biophysical parameters by combining
the SR. To improve the accuracy of the prediction model and avoid the problem caused by redundancy
between input features, a reselection process was implemented on the 14 indicators. Because spectral
indicators are comprehensive in the detection of disease, the Relief algorithm and Pearson correlation
were applied. Relief updates the weight of each feature by finding the nearest neighbor samples in two
categories repeatedly, indicating the discrimination ability of features to close samples. Meanwhile,
the Pearson correlation between two features illustrates the redundancy [36].

As for the weather feature selection, a commonly used method is evaluating the correlation between
disease and weather indices in different narrow periods of a certain length (windows) [7], [37-39].
Near the predicted heading to flowering date, we calculated the average temperature (TAVG); average
relative humidity (RHAVG); average precipitation (PAVG); average sunshine hours (SSDAVG); days
with an RH greater than 60%, 70%I and 80% (RH60, RH70, and RH80); days with an RH greater
than 60%, 70%, and 80% and a temperature greater than 15 °C and less than 30 °C (RHT60, RHT70,
and RHT80); and the number of rainfall days (PDAY) in different narrow time ranges. Since a single
weather index has a direct impact on FHB, we focused on the correlation between each index and FHB.
Therefore, the Kendall and Pearson correlation coefficients of these indices were calculated.
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2.2.2. FHB Prediction with Relevance Vector Machine

As the time approaches the FHB infection period, the conditions of the host and habitat constantly
change, which makes it possible for the prediction to be realized dynamically. The remote sensing
features used to detect host conditions changed as satellite-based images were regularly obtained.
Meanwhile, for weather features, though their time ranges were fixed by the predicted heading and
flowering dates, the meteorological data, in practice, should have been forecasted and became more
accurate as the time approached. Therefore, the prediction of FHB can be refreshed as long as the
satellite-based remote sensing data or the weather forecasting data are updated. Comprehensively
combining the remote sensing features on different dates and the weather features around heading to
flowering, we put forward the predictions on the corresponding dates.

The field samples with the remote sensing and weather features at different times were respectively
split into training and test sets, with the same spatial distribution. Each training set was used to
optimize the parameters of the Relevance Vector Machine (RVM) and train the model. It is generally
believed that the higher the probability, the closer the sample is to a certain category. Therefore,
we concentrated on the probability of classification (PRC), but not simply infected or uninfected.
According to the Chinese National Standard GB/T 15796-2011 (rules for the monitoring and prediction
of wheat head blight), we split the PRC into four levels. The higher the level, the more likely FHB was
to occur: level I (0 < PRC < 25%), level II (25% < PRC < 50%), level III (50% < PRC < 75%), level IV
(75% < PRC < 100%). With the selected model, the probability of the FHB of each pixel was obtained,
and the FHB severity on the four dates was mapped. Besides, the corresponding test set was utilized
to measure the model performance from three aspects. When setting the classification threshold as
constant, we considered the total accuracy and combination results of the precision and recall rates.
Then, the generalization ability was evaluated.

RVM, proposed by Tipping in 2001, is a sparse probability model with a high generalization ability,
suitable for a small number of samples [40,41]. Carried out in the framework of Bayesian, RVM will
produce few relevance vectors (RVs) in the training process and obtain the posterior distribution of
model parameters through training. In the beginning, we optimized the parameters of RVM. A kernel
(K) was used to transform the data into a higher-dimensional space, improving the separability of
classification [42,43]. To determine the parameters of the kernel for the better performance of RVM,
we applied cross-validation in the training sets [44], and the average overall accuracy (OA) of the
corresponding model was calculated. Subsequently, in order to evaluate the performance of the RVM
model with the optimal parameters, we measured the ability of the model by test sets. In the beginning,
we calculated the overall accuracy to evaluate the accuracy of classification. Then, an index, F1 score,
was calculated for a comprehensive consideration of the precision and recall rate [45]. In addition,
as class imbalance often occurs in the actual data set, the average receiver operating characteristic
curve (ROC) and area under the curve (AUC) were utilized to describe the generalization ability of
our model [46]. We randomly split the samples on each date to obtain the ROC curves and calculated
the AUC.

Because the most influential factors in the development of FHB occurrence have been considered,
including the host the habitat conditions, the prediction was expected to be more accurate and
persuasive compared to the system constructed by only one kind of factor. Besides, since RVM can
provide a posterior probability estimation in classification, and has a great generalization ability as a
result, the probability of FHB was more reliable. Moreover, with the change in the remote sensing
features, the development of FHB was explored, and therefore dynamic prediction was realized.

3. Results

3.1. Identification of Host and Habitat Conditions Sensitive to FHB

Host conditions, including growth stages (the heading and flowering dates of crops) and growth
conditions (spectral indicators of crop biophysical properties and diseases stress), were respectively
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obtained through long time-series MODIS LAI and Landsat-8 images on different dates with a high
quality and few clouds covered. Then, the habitat conditions were described by the weather indices
around heading to flowering.

The heading and flowering dates of winter wheat in 2017 were predicted with the green-up
date regarded as the start, based on the average accumulated temperature between the green-up
and heading dates in 2014-2016. Utilizing the Whittaker smoother and iLAI-Logistic method, we
extracted the green-up and heading dates of winter wheat in 2014-2016 and the green-up date in 2017.
The prediction results of the heading and flowering dates in 2017 based on the average accumulated
temperature in the past three years are shown in Figure 4. When comparing the predicted heading
dates with the results extracted by MODIS LAI (Figure 5), 57.67% of the pixels had a difference of
0—4 days, 73.7% of them had 0-6 days, and 84.6% had 0-8 days. Namely, the results of the two methods
were similar, and the prediction results had a certain reliability. Besides, with the regulations about
standards of wheat production in Anhui, about 80-85% of wheat in Anhui Province were planted from
October 15 to October 31. Therefore, as for the validation of the extracted green-up and heading dates
in 2014-2016, because they highly depended on the seeding time, which was generally similar in these
years, we counted the average green-up and heading dates of winter wheat in Anhui Province and in
31 °N-33 °N according to the historical agrometeorological data and took the intersections. It was
considered that the extraction results outside the intersection range were the points with larger errors.
In general, the proportion of pixels within the intersection range of Dingyuan and Changfeng were
92.5-94.5% and 94.5-97%, respectively—within an acceptable range.

Heading date
I Apr2 - Apr8

Flowering date

I ApT.6 - Apr.12

[ JApr9 - Apr.15 [ JApr.13 - Apr.19
[T]Apr.16 - Apr.22 s [TApr.20 - Apr.25
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Figure 4. Prediction results of the heading and flowering stages of winter wheat in 2017.
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Figure 5. The scatter plot between the DOY of the predicted and extracted heading.



Remote Sens. 2020, 12, 3046 8 of 19

Identifying variables to be used as input features is of great significance to develop a disease
prediction system. Two key points need to be taken into consideration: the higher correlation of the
feature with FHB or the higher weight of it in FHB classification, and the lower redundancy between
these features [36]. For selecting remote sensing features, the hyperspectral data of the wheat canopy,
whose spectral resolution was 3 nm in the range of 350-1000 nm, were used to simulate the reflectance of
L8 Operational Land Imager (OLI) bands. With the canopies labeled infected or uninfected, we applied
the Relief algorithm and Pearson correlation coefficient on the 14 spectral indicators, calculated or
extracted from the simulated L8 data. The results of Relief are shown in Figure 6. Subsequently,
between the two features with a large Pearson correlation, we had the feature with the higher weight
reserved. Finally, four remote sensing features were selected to illustrate the growth of the crops and
the development of FHB: PSRI, Green, Red, and NIR. According to this, the four features of the selected
L8 images were extracted and synthesized, corresponding to February 18, March 6 (only Dingyuan),
April 23, and May 9, respectively.

S O S
@44\O§

o

$ & & &
Q_O& ""9 q}"éo xho@“e@
Spectral indicators

Figure 6. The Relief weight of the remote sensing indicator in FHB recognition.

We obtained 140 weather indices of every field sample with labels (infected or uninfected).
Taking 3, 5, 7, 11, and 15 as the length of the time period (window) and regarding the predicted
heading date as the last and the middle day of the window, we calculated the pre-heading and heading
weather indices, including TAVG, RHAVG, PAVG, SSDAVG, RH60, RH70, RH80, RHT60, RHT70,
RHT80, and PDAY. A total of 70 weather indices near the heading date were obtained. Similarly,
the pre-flowering and flowering weather indices were calculated in the same way, with the predicted
flowering date as a time reference point. Kendall correlation coefficients of the 140 weather indices
near the stage of predicted heading to flowering date was calculated by the field samples. We selected
the indices whose absolute Kendall correlation was greater than 0.3 and, combined with the results of
the Person coefficient between them, we got five weather features which are listed in Table 1.



Remote Sens. 2020, 12, 3046 9 of 19

Table 1. Weather indices selection results based on the Kendall and Pearson correlation coefficients.

Index Definition Kendall p Value

Taking the flowering date as the middle, the

d15RH80 duration (days) of 15 days with RH > 80% 043 0.005
Taking the heading date as the middle, the
b15RH80 duration (days) of 15 days with RH > 80% 042 0.008
J5RHAVG Taking the flowering date as the middle, the 041 0.004
mean value of RH
c7TAVG Mean temperature of 7 days before flowering 0.41 0.009
c7PAVG The average rainfall of 7 days before flowering 0.39 0.009

3.2. FHB Dynamic Prediction with RVM and Model Validation

To be noticed, the remote sensing features were changed since images were acquired on different
days. Whereas, for the weather features, we utilized the measured data from meteorological stations
instead of the forecasting data, and hence the weather features of samples were unchanged. That is,
each field sample had two kinds of features, in which the remote sensing features changed with the
acquisition of satellite-based images, and the weather features were fixed. Combing the PSRI, Green,
Red, and NIR of L8 images on different dates and five weather features calculated near the heading or
flowering date, we predicted the severity of wheat FHB on February 18, March 6 (only Dingyuan), April
23, and May 9. The cloud cover of the images on the four dates was 0.14%, 11.03%, 1.92%, and 1.62%.
On March 6, the cloud was mainly distributed in the north of Changfeng, and hence our prediction on
the day was only achieved in Dingyuan. A total of 45 field samples with features on these four dates
were respectively split into training and test sets, with a proportion of 7:3. The training sets were used
to determine the parameters of RVM, and we constructed prediction models on four dates, calculated
the probability of each FHB-infected wheat pixel, and mapped the results. Subsequently, the total
accuracy, classification performance, and generation ability of the four-day models were assessed by
the corresponding test sets. As a comparison, the Logistic classification model, a common model that
was used to get the probability of the classification, was utilized in the same way.

In the beginning, to optimize the parameters of the RVM kernel, we applied a five-fold
cross-validation on the training sets on different dates. For the polynomial kernel, v is the inner
product coefficient and d is the dimension. Meanwhile, in the case of the Radial Basis Function (RBF)
kernel, v determines the RBF width. Taking the prediction on April 23 as an example, Table 2 shows
the validation results of RVM under different parameters. In our experiment, the performance of
RBF was generally better than the polynomial, and the number of RVs was fewer. Because of the
fewer parameters and higher accuracy, RBF has been widely used in recent research [22,42,43,47].
In the prediction results based on the combination of weather and remote sensing features on April 23,
when v was equal to 0.01, the accuracy is the highest. Similarly, the parameters of the models utilized
on the other three dates (February 18, March 6, and May 9) were decided in the same way.

Table 2. Taking 0.5 as the threshold of probability of classification, the mean of overall accuracy (OA)
for five-fold cross-validation, and the number of Relevance Vectors (RVs) for one subset.

Parameter
Kernel Type 1 Mean of OA Number of RVs
Y
RBF 0.0001 - 0.802 11
RBF 0.01 - 0.846 16
RBF 100 - 0.778 11

Polynomial 0.01 3 0.758 23
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RVM models with optimized parameters were used to predict the occurrence probability of
wheat FHB on four dates in 2017. Meanwhile, the Logistic model was utilized to compare with RVM.
The probability was divided into four risk levels, as shown in Figure 7. In general, the situation of
wheat FHB in Dingyuan County was more severe in 2017. The risk level of continuous planting area in
the northwest and northeast was III or IV, while that in Changfeng County was high in the northeast.
When comparing the results of the two models, the distribution of wheat in different severity levels
shows little difference, and the regularities were obvious; when the remote sensing features were closer
to the stage of heading to flowering, the prediction of the areas with severe disease was more accurate,
and these areas showed aggregation in the mapping. In total, over time, the areas of grade I were fewer,
the areas of risk grade IV increased, and the grade II and III areas were changing to other grades thus
with a small change. Compared with the results of the RVM, the prediction probability of the Logistic
model is larger on February 18 and March 6 and smaller on April 23 and May 9 in general areas.

Further, we compared our results with those predicted using only the selected weather and only
the remote sensing features on April 23 with RVM (Figure 8). Compared with the prediction with
multiple factors, by and large the severity of the results obtained by only using the remote sensing
features was less, and when only using the meteorological features it was higher. Except in some
areas, the prediction results using only one kind of feature were similar, such as the western part of
Dingyuan County, where the probabilities were all smaller than that predicted from the multiple factor
combination. The comparison showed that FHB was the result of the comprehensive effects of host
and habitat conditions; even if the meteorological conditions were conducive to the occurrence of FHB,
the growth of crops would still affect the further development of it.

(a) February 18.

Figure 7. Cont.
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(b) March 6.
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Figure 7. Prediction results of the FHB severity. According to the Chinese National Standard, the severity
was divided into four risk levels. (a-d) The results of RVM (left) and Logistic (right), utilizing the
remote sensing features in four dates.
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Figure 8. Prediction results utilizing only one factor. (a) The result obtained using the remote sensing

features on April 23. (b) By the selected weather features.

To evaluate the advantages of RVM in predicting the wheat FHB, we compared the performance
between the RVM and the Logistic model. The value of 0.5 was set as the threshold of probability to
calculate the overall accuracy and the F1 score of the two models on different dates (Table 3). In total,
the prediction accuracy of RVM was higher than that of the Logistic model. From the results, it is
apparent that when the date of remote sensing features was close to the stage of heading to flowering,
the prediction accuracy of the two models was higher, which showed that the remote sensing features
can reflect the development of FHB to a certain extent.

Table 3. Overall accuracy and Fl-score of the two models on different dates when the threshold of

probability was 0.5.
Date of the Prediction
Index Type Prediction Model
February 18 March 6 April 23 May 9
OA RVM 0.71 0.78 0.85 0.93
OA Logistic 0.64 0.71 0.78 0.78
F1 RVM 0.70 0.79 0.86 0.92
F1 Logistic 0.64 0.74 0.75 0.79

Besides this, samples on Feb. 18, Mar. 6 (Dingyuan only), Apr. 23, and May 9 were randomly
selected for 50 times, respectively, to get 50 curves on each date, then averaged to obtain the average
ROC curve and calculate the AUC, as shown as Figure 9a—d. What stands out in the comparison is
that the specificity of RVM was better, and the sensitivity of the Logistic model to diseased wheat
had a slight advantage. The areas under the curves were all greater than 0.5, which indicated that
the prediction of wheat FHB by both methods was better than a random guess and had a reference
value. Besides this, the generalization ability and prediction ability of RVM were better than those of
the Logistic model, to a lesser extent. When the date was closer to the onset period of FHB, the AUC
also increased, and the prediction results were more accurate.

Moreover, to show the difference between the RVM constructed by multiple factors (remote
sensing and weather features, Model 1) and that predicted by only one type of factor (remote sensing
features on Apr. 23 or weather features, Model 2 or Model 3), we drew their average ROC curves in the
same way (Figure 9e,f). Compared with Model 2, Model 1 greatly improved the prediction accuracy.
As a classic FHB prediction model, the meteorological statistical model also had certain reference in
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our experiments, partly because the weather features were calculated strictly according to the heading
and flowering date of each pixel. However, when weather conditions suitable for FHB also occurred in
areas with low severity, FHB infection could be inhibited when the host’s own growth met certain
conditions. In total, the integration of multiple factors is feasible and the remote sensing data can
supplement the information of FHB. Therefore, in the period of disease development, the coupling
growth stages, growth conditions, and weather conditions can improve the prediction accuracy of the
severity of FHB and reveal its occurrence and development law.
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Figure 9. Average ROC curves and their corresponding AUC. (a—d) ROC curves of RVM and the
Logistic model, using selected weather and remote sensing features from February 18, March 6, April 23,
and May 9, respectively. (e,f) ROC curves of RVM, model 1, constructed by weather features and
remote sensing features on April 23; model 2 constructed by only remote sensing features on April 23;
model 3 constructed by only weather features.

4. Discussion

Researchers have developed various methods to predict this meteorological crop disease. The major
merit of our method was the comprehensive consideration of host and habitat conditions [25], [20].
Besides, we realized dynamic prediction that made it possible for farmers to obtain early warning
information. Time-series remote sensing data with high time resolution and the accumulated
temperature were used to predict the heading and flowering dates of crops. Four indices, including
PSRI, Red, Green, and NIR, were selected as remote sensing features to detect the growth of the crop.
Besides this, five weather indices around heading or flowering were selected as weather features.
The dynamic prediction was realized through inputting remote sensing features on different dates.
Based on the nine optimized features, we compared the RVM with the Logistic model, and found that
RVM was more suitable for wheat FHB prediction with a small sample of experimental data. When the
date of remote sensing features was close to the stage of heading to flowering, the prediction accuracy
was higher.

As the host of the pathogen, the growth stages and conditions of the crop play decisive roles.
Every period could influence the FHB infection—for example, late seeding will result in a serious
deficiency of wheat growth before winter, delay other growth periods, and shorten the grain filling
period [48], which makes wheat more vulnerable to FHB [49]. However, heading and flowering are
more critical to pathogen infection. Continuous rainy days in this time are likely to result in an epidemic
of FHB [50]. MODIS data have been widely used in plant growth detection, especially in time-series
applications [51,52]. Using long time-series MODIS data can accurately extract the green-up and
heading dates of winter wheat [53-55], and the accumulated temperature data, as a significant factor
indicating the transition of crop growth, can be used to predict growth stages [30]. The prediction of
heading or flowering has more representational significance for the subsequent disease prediction, and
reduced the uncertainty from the dormancy period. However, there is still something to be improved
in our method. In our study area, the average area of wheat fields was 43.7 hectares in Changfeng
and 48.4 hectares in Dingyuan. Though the growth periods in a small field were usually homogenous,
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and the wheat fields in our study area were generally continuous, mixed pixels still influenced the
extraction of growth stages. To obtain more convinced growth stage prediction results, we will try
to collect some field data to explain the spatial distribution of the heading and flowering dates and
use algorithms that deal with these mixed pixels. Besides, high spatial resolution remote sensing
data provide detailed information on crop nutrition and structure. The increase in the PSRI can well
reflect the stress of the crop canopy [11], and the other three parameters can offer information on crop
growth. However, the Landsat-8 lack a red-edge band. The reflectance of 670-760 nm can be used
to monitor plant activity, indicating the degree of crops under disease stress. Therefore, the spectral
features will be improved in future work to illustrate the chlorophyll decomposition, early senescence,
fast draining in spike water, and nitrogen concentration changes resulting from the invasion of the
pathogen [56]. Weather conditions, especially temperature and humidity, are highly associated with
epidemics. We found that weather indices near the predicted flowering stage were more critical to
the development of FHB than those near the predicted heading date. Narrow periods around crop
anthesis can be used to partly indicate FHB epidemics. This was consistent with the results of previous
research [7,57].

Apart from these key factors that were considered in our methods, numerous other elements
influence the occurrence of FHB infection, and the effect cannot be ignored under certain circumstances.
First of all, there will be variances in the FHB resistance for different varieties of wheat, hence resulting
in variances in their spectral features [2,56]. In the study area, farmers chose wheat varieties under the
guidance of the local government, mainly Yangmai 25, Ningmai 9, Yangmai 15, etc. The characteristics
of these varieties were similar, such as their high yield, but they were moderately susceptible to FHB.
Though these wheat varieties have a similar susceptibility, a comparison between them is of great
significance when the study area is larger. In our future work, we will try to find the differences in
spectral features of these infected crops and realize the prediction in separate zones with different wheat
varieties. Besides this, we will take the influence of mechanized operations into consideration—for
example, stretcher sprays are 10% more effective than electric sprayers in FHB control [48]. The effect of
fertilizers or other treatments is also important, especially nitrogen fertilization, which has been proved
to be influential in FHB occurrence [2,58]. In our study area, there were no significant differences
in these factors mentioned above, because the area was not large and the Chinese government has
formulated a series of regulations to help farmers manage crops. However, to extend our methods to
larger areas, we will try to collect this information and take full consideration in the future.

Our method was established to provide a more advantageous model for FHB severity prediction.
In our numerical experiments, by integrating the remote sensing and weather features, RVM performed
better when the remote sensing features were closer to the stage of heading to flowering, with the overall
accuracy reaching 0.9 and the AUC around 0.7. The RVM and the Logistic model both proved to be
useful in plant disease detection and prediction [13,36,59]. In our study, the accuracy and generalization
ability of RVM on the four dates were higher than those of the Logistic model, and increased by about
10-20% and 6-9%, respectively. Moreover, when comparing the result of the RVM constructed by
multiple factors and that constructed by only one type of factor, the comprehensive consideration of
host and habitat conditions could improve the accuracy [60-62]. However, RVM performs well on
small samples, but the universality of parameters of this kind of model is not that satisfying. That is,
the parameters of the model will be different with the change in both time and space. A further study
with deep learning algorithms could be considered to continuously refresh the parameters with new
data input [20,63].

5. Conclusions

This study developed a dynamic prediction method for wheat FHB. Host and habitat conditions
play decisive roles in FHB infection. The heading and flowering dates of winter wheat were predicted
through long time-series MODIS LAI products. The remote sensing features on different dates
and weather features around heading and flowering were combined to predict the severity of FHB.
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The dynamic prediction was realized through inputting remote sensing features that change with time.
With these crucial features as inputs, RVM performed well on the small sample of experimental data.
The results showed that comprehensively considering those key factors can improve the prediction
accuracy, and that when the date of remote sensing features was close to the stage of heading to
flowering, the accuracy of the model was higher.

Some important issues should be taken into account in future work. Firstly, phenology information
extraction should consider the influence of mixed pixels, and seeding dates can be used as explanatory
factors. Besides this, combining the spectral bands that are sensitive to the changes resulting from FHB
infection can improve the prediction accuracy. Other factors that influence the occurrence of FHB—for
instance, the variety of wheat, mechanized operations, and fertilizers or other treatments—also
play important roles. With the full consideration of these elements, adopting a model with a better
generalization ability can make the method more suitable for larger areas.
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