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Abstract: Using high-resolution remote sensing data to identify infected trees is an important method
for controlling pine wilt disease (PWD). Currently, single-date image classification methods are
widely used for PWD detection in pure stands of pine. However, they often yield false detections
caused by deciduous trees, brown herbaceous, and sparsely vegetated regions in complex landscapes,
resulting in low user accuracies. Due to the limitations on the bands of the high-resolution imagery,
it is difficult to distinguish wilted pine trees from such easily confused objects when only using the
optical spectral characteristics. This paper proposes a spatiotemporal change detection method to
reduce false detections in tree-scale PWD monitoring under a complex landscape. The framework
consisted of three parts, which represent the capture of spectral, temporal, and spatial features:
(1) the Normalized Green–Red Difference Index (NGRDI) was calculated as a descriptor of canopy
greenness; (2) two NGRDI images with similar dates in adjacent years were contrasted to obtain a
bitemporal change index that represents the temporal behaviors of typical cover types; and (3) a
spatial enhancement was performed on the change index using a convolution kernel matching the
spatial patterns of PWD. Finally, a set of criteria based on the above features were established to
extract the wilted pine trees. The results showed that the proposed method effectively distinguishes
wilted pine trees from other easily confused objects. Compared with single-date image classification,
the proposed method significantly improved user’s accuracy (81.2% vs. 67.7%) while maintaining
the same level of producer’s accuracy (84.7% vs. 82.6%).

Keywords: pine wilt disease; high-resolution remote sensing; spatiotemporal analysis; complex
landscape

1. Introduction

Pine wilt disease (PWD) is a lethal wilting disease caused by the pine wood nematode
(Bursaphelenchus xylophilus; PWN). After becoming infected with the disease, pine trees
show certain symptoms, in which the needles of the tree gradually change color; the pine
resin stops flowing; and the tree wilts, withers, and eventually dies, with the whole process
occurring over a few months [1–3]. In 2020, PWD has been reported in 18 provinces,
autonomous regions, and municipalities that are directly under the Central Government of
China, with an infestation area of 1.8 million ha and a death toll of 19.5 million trees [4].
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Studies have shown that, with the changes in climate in recent years, the potentially
suitable areas for pine wood nematodes have expanded toward China’s northern and
western regions [5–7]. These results indicate that pine wilt disease has already become
one of the most dangerous forest biological disasters in China, not only causing serious
damage to pine forest resources and endangering the ecological security of scenic spots
and other areas but also seriously affecting China’s import and export trade.

Currently, it is believed that PWD is the interactive outcome of the pathogen, the
host pine tree, the insect vector, and climatic conditions [8]. Moreover, there is currently
no effective method to completely eradicate the disease, and the timely removal of the
diseased trees is the most effective way to control the disease once the infected trees are
identified [9]. In recent years, the development of high-resolution commercial satellites and
unmanned aerial vehicle (UAV) technology has also provided new data support for natural
resources monitoring. Compared with other survey methods, remote sensing technology
has many advantages when making surveys of forest pests and diseases, including (1) fast
information acquisition with a short revisit cycle, (2) less restriction by ground conditions
and low labor costs, and (3) the capability for large-scale monitoring [10]. Therefore, using
remote sensing technology to accurately locate trees that are infected with pine wilt disease
can enable timely monitoring of the health status of the forest and cleanup of diseased trees
while helping to elucidate the pattern of prevalence of the disease at multiple scales and its
interactions with humans and the natural environment.

The Joint Research Center (JRC) conducted a pilot study in 2014 and 2015 to confirm
the feasibility of identifying dead pine trees through high-resolution satellite remote sensing
images and UAV images and to establish a basic methodological system of using remote
sensing to monitor PWD-infected trees [11]. Currently, in monitoring discolored pine
trees caused by forest pests and diseases, optical satellite remote sensing is the most
widely used method. Previous studies based on hyperspectral data showed that the
canopy color change of pine trees include higher red band reflectance than green band
reflectance, a decreased slope, and a blue shift of the red edge [12–14]. Unlike the stand or
landscape-scale forest mortality [15], PWD usually occurs at the tree-scale, which needs
high-resolution imagery to provide distinct information on the infestation patterns [11]. The
commonly used high-resolution satellite remote sensing data for PWD detection include
IKONOS [16,17], QuickBird [18,19], WorldView [20], and GeoEye-1 [21]. Methodologically,
image enhancement is achieved through a variety of methods, such as constructing the
spectral index, principal component analysis, and tasseled cap transformation, on which
the wilted pine trees are further extracted through the threshold segmentation method or
machine learning [22–25].

The studies mentioned above are mostly based on single-date image classification,
which have been well applied in studies for pure pine forests. However, in the complex
landscapes (i.e., structurally heterogeneous vegetation or fragmented land cover), there
could be many pixels with similar spectral properties to the wilted pine trees in the
image, such as seasonal discoloration of deciduous trees, brown herbaceous, and sparsely
vegetated regions [26,27]. For instance, the incidences of PWD in southern China are
highly spatially dispersed, with a complex distribution [28], and the seasonal discoloration
of the deciduous trees in the mixed forest is very similar to the wilting process of the
pine trees. On the other hand, high resolution satellite imagery provides spatial detail
at the tree-scale but mostly only four (visible and near infrared) bands on which the
wilted pine trees and the easily confused objects show indistinguishable spectral properties.
Moreover, high-resolution imagery often yields more variable reflectance values within
one cover type [21,29,30]. These issues significantly confuse the recognition process and
specifically causes a lot of commission errors into the result, which is more problematic
than omission errors from an operational perspective [17]. In summary, the main reason
for the limitations in using high-resolution images to monitor PWD is that the approaches
have relied excessively on the spectral information while overlooking the spatiotemporal
patterns of the discoloration process.
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By addressing these problems, we insist that a change detection method based on
fusing spatial and temporal characteristics is a reasonable strategy to improve the accuracy
(especially user accuracy) in PWD detection. The objective of this study is to incorporate
spatial and temporal information extraction and to explore its improvements in tree-scale
PWD detection in a complex landscape. Specifically, a spectral index is calculated to
represent the canopy greenness in a single-date satellite image; the temporal behavior of
the wilting process is measured using bi-temporal change detection; the spatial feature of
wilted pine trees is enhanced by a spatial convolution operation using a proposed kernel.
The PWD-induced wilted trees are subsequently determined by the extracted features.

2. Materials and Methods
2.1. Study Area

The study area is located in Dangyang City, Hubei Province (Figure 1a). Dangyang is
situated in a mid-latitude area and experiences a subtropical monsoon humid climate, with
rainy and hot weather occurring within the same season. The annual average temperature
is 16.6 °C, and the average annual rainfall is approximately 990 mm. The study area
consists of a hilly area with undulating terrain and fragmented land cover. The main
forest type is mixed forests, in which the evergreen tree species are mainly masson pine
(Pinus massoniana) and slash pine (Pinus elliottii), and the deciduous tree species are mainly
sawtooth oak (Quercus acutissima) and cork oak (Quercus variabilis). The main soil type is
the yellow brown soil.

Due to incomplete clearing of infected trees and a favorable living environment for
the host insects (Monochamus alternatus) of PWN, Dangyang has experienced PWD-induced
tree mortality since 2015. The foliage of the wilted pine trees begins to turn red or yellow
every October, and discoloration and defoliation of deciduous trees occur during the same
period. The fragmented land cover together with the deciduous trees pose an immense
challenge to PWD monitoring. In this study, we designated five field sites with new
outbreaks of PWD in 2019 (Figure 1b) to analyze the spatial and temporal characteristics of
tree wilting and to verify the detection results.
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Figure 1. Overview of the study area and field sites. (a) The study area located in Dangyang City,
Hubei Province. (b) A thumbnail graph of the PlanetScope satellite image and the spatial distribution
of the five field sites.

2.2. Data Collection
2.2.1. Satellite Imagery

The satellite imagery dataset in this study consisted of a pair of PlanetScope multispec-
tral images on similar dates in adjacent years. The first image was acquired on 22 October
2018, and the second image was acquired on 15 October 2019. PlanetScope is a satellite
constellation consisting presently of 130+ CubeSats (4 kg satellites) operated by Planet
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Labs [31]. The company has established a data-sharing program to provide PlanetScope
data with high spatial and temporal resolution to users [32]. PlanetScope imagery contains
four spectral bands, i.e., blue (455–515 nm), green (500–590 nm), red (590–670 nm), and
near-infrared (NIR, 780–860 nm). We employed the Level-3B surface reflectance products
that have been atmospherically corrected by Planet Labs. The spatial resolution of these
products is 3 m, which could meet the requirements for tree-scale monitoring in the study
area according to the canopy width of pine trees from the field survey. We checked the
co-registration of the two PlanetScope acquisitions and found that they were already well
co-registered. A reference image (date: 15 October 2019) was selected, and the other image
was radiometrically normalized to this reference image following the approach of Canty
and Nielsen [33]. Based on these operations, we finally obtained the ready-to-use images
for the five field sites.

2.2.2. Ground Control Data

In situ investigations were performed for the five field sites from 17 to 22 October 2019.
Unmanned aerial vehicle (UAV) photos were taken at each site as a combination between
the satellite imagery and the ground data. The photos were taken at an oblique angle and
hence cannot be accurately projected to a geographic coordinate system. Consequently,
visual interpretation was required to determine typical land (or surface) cover types in the
satellite image on 15 October 2019. Although most of the cover types in the satellite image
can be clearly determined by referring to the UAV photos, it is still hard to identify whether
the discoloration of a tree is caused by PWD or related to phenology. To solve this problem,
field crews were dispatched to validate the species and the reason for discoloration in
these trees. The wilted pine trees and the discolored deciduous trees were then recorded
separately (e.g., at Site A, Figure 2).
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Figure 2. The locations of the wilted pine trees (marked with Arabic numerals) and discolored
deciduous trees (marked with Roman numerals) on (a) the UAV photo and (b) the satellite image at
Site A. The canopy widths of the Nos. 2, 9, and 15 trees were less than 3 m, and the No. 14 pine tree
was mostly blocked by the adjacent trees.

We found that the mean canopy width of the wilted pine trees in the five field sites
was 5.6 m (SD = 1.7), which was used to evaluate the appropriate spatial resolution for
tree-scale PWD mapping. For each wilted pine tree at each site, the canopy width was
recorded and classified based on the spatial resolution of the PlanetScope image used in this
study (Table 1). All of the wilted pine trees newly added in 2019 were collected and saved
as point features. As the spectral signal is significantly distinct from the neighborhood
in the case that the wilted pine tree mostly covers at least one pixel [34,35], the wilted
pine trees with a canopy width less than 3 m were not considered for the subsequent
analysis. Consequently, a total of 203 wilted trees with canopy width greater than 3 m
were selected. Afterwards, a pixel-wise sample set was simultaneously built based on the
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selected wilted pine trees and visual interpretation. There were nine cover types in the
sample set, including healthy and wilted pine trees, deciduous trees, grass, crops, water,
buildings, roads and barren. A total of 1231 sample pixels (15–40 pixels for each of the
cover types in each site) were labeled for temporal behavior analysis and classifier training.

Table 1. The count of the PWD-induced wilted pine trees with different canopy width for the five
field sites collected in the in situ investigations.

Site Area (ha) Forest Type
Number of Wilted Pine Trees
in Different Canopy Width

>3 m ≤3 m Total

A 5.1 Mixed 12 3 15
B 9.8 Mixed 6 1 7
C 14.3 Mixed 90 14 104
D 12.6 Mixed 28 2 30
E 8.5 Pure 67 5 72

Total 50.3 203 25 228

2.3. Methods
2.3.1. General Workflow

We established a spatiotemporal change detection framework to capture the spatial
and temporal patterns of the wilting process caused by PWD (Figure 3): (1) a spectral
index was calculated for the two remote sensing images with similar dates in adjacent
years; (2) a bi-temporal change analysis was used to obtain the differences between the
calculated indices; and (3) the resulting image was enhanced through spatial convolution
based on a proposed kernel that was fitted to the spatial pattern of the wilted pine trees.
Finally, a set of criteria were used to extract the wilted pine trees caused by PWD. The
spatiotemporal analysis focused on distinguishing between the wilted pine trees and other
objects with similar spectral properties but diverse temporal behaviors and spatial patterns
(e.g., discolored deciduous trees, brown herbaceous, and sparsely vegetated regions).
The results were validated using the locations of the wilted pine trees recorded in the in
situ investigations. Meanwhile, a supervised classification method based on single-date
imagery was performed for comparison.
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Figure 3. Flowchart outlining the main steps implemented in the spatiotemporal change detection framework. The spectral
indices were used to indicate the non-green pixels in the image pair; the bi-temporal analysis was used to reveal the pixels
with changed cover types at two times; and the spatial enhancement was used to specifically highlight the wilted pine trees
in the satellite image.

2.3.2. Bi-Temporal Change Detection

The Normalized Green–Red Difference Index (NGRDI) was calculated for both images,
using the formula of Hunt et al. [36]:

NGRDI =
ρgreen − ρred

ρgreen + ρred
, (1)

where ρred and ρgreen are the reflectance of the red and green bands, respectively. The
NGRDI observations are correlated with green vegetation cover with the possible range
from −1 to 1. In this study, the NGRDI was employed to indicate the color of a pixel (i.e.,
greenish or reddish). Then, a differentiation was made between the NGRDIs from the
two dates:

∆NGRDI = NGRDI2 − NGRDI1, (2)

where NGRDI1 and NGRDI2 are calculated from the satellite images from 22 October 2018
and 15 October 2019, respectively.
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2.3.3. Spatial Enhancement

A typical spatial pattern of the wilted pine trees in the ∆NGRDI images were ab-
stracted based on the average canopy width, which is approximately twice the size of the
pixel (Figure 4). In the imaging process, radiation naturally reflected from the ground
are sampled and quantized into digital numbers (DNs) within the grid cells. The spacing
between pixels on the canopy was shown in Figure 4a. In general, the ∆NGRDI values
of the wilted pine tree are negative and significantly lower than those of the surrounding
healthy trees, which is close to 0. Within a wilted pine tree, the ∆NGRDI values of the
canopy centroid are lower than those at the edge of the canopy (Figure 4b). Therefore, we
defined a measure of the spatial similarity of an image patch to a wilted pine tree using the
spatial convolution with a 5 × 5 kernel (Figure 4c). The kernel was then normalized to sum
to 1, and the ∆NGRDI image was convolved with the normalized kernel. Let Conv be the
output of the spatial convolution from the input ∆NGRDI image.

Figure 4. Typical spatial patterns of (a) a wilted pine tree on the ground and (b) the corresponding
∆NGRDI in the satellite image, and (c) the proposed kernel matching the spatial pattern of the wilted
pine trees. The canopy width is set to twice the pixel size as an example according to the average
canopy width acquired from the in situ investigations and spatial resolution of the satellite image
used in this study.

2.3.4. Extraction of PWD

Based on the spatiotemporal features, we set up a group of restrictions on the spa-
tiotemporal features (Table 2). The single-date NGRDI image could indicate the non-green
objects, including wilted pine trees and many other objects with the similar spectral prop-
erties. The bi-temporal change detection distinguished between the wilted pine trees and
these objects by capturing the temporal behaviors of the wilting process. However, pixels
with the certain land (or surface) cover change (e.g., deforestation, fallow) during 2018–2019
could show similar temporal behaviors to tree wilting. As such events were commonly
of larger spatial extent and relatively homogeneous ∆NGRDI observations, which was
different from the wilted pine trees (Figure 4b), spatial analysis was additionally performed
to eliminate them.

Table 2. The criteria for the spatiotemporal features extracted from image pair to distinguish the pine wilted trees.

Category Feature Abbrev Type Criterion

Temporal NGRDI observation in the first image (22 October 2018) NGRDI1 Pixel-wise >0
NGRDI observation in the second image (15 October 2018) NGRDI2 Pixel-wise <0

Spatial Output of the spatial convolution on the ∆NGRDI Conv Pixel-wise ≥α
Pixel count in a candidate bounding box (BB) Object-wise ≤N
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Specifically, a threshold of α was applied on Conv to mask the possible wilted pine tree
pixels (Figure 5a). Then, we converted the pixel-based results into the target-based results,
in which the adjacent pixels (including diagonally connected pixels) were reorganized into
a target and designated each corresponding rectangular frame as a candidate bounding box
(BB, Figure 5b). The number of pixels in each candidate BB was counted. As the BBs were
approximately squared, the possible pixel count could be inferred in advance. For example,
the pixel counts of the candidate BBs are nine and six in Figure 5b. The upper limit of the
pixel count in a candidate BB was set as N to avoid false detections of the large-scale land
(or surface) cover change.

In addition, a support vector machine (SVM) classification with the 2019 image was
performed as a single-date image classification method to compare with the spatiotemporal
change detection method. As there were too few wilted pine trees at Sites A and B and Site
D was full of pure pine stands, we randomly selected approximately 60% of the samples at
Sites C and D to train the classifier. For the key parameters in SVM, kernel type was set as
the Radial Basis Function, cost parameter was set as 100, and gamma was set as 0.25 (the
reciprocal of the number of bands). For the classification results, only the wilted pine tree
class was considered, and likewise, the pixel-wise results were also converted to candidate
BBs and screened by N.

Figure 5. Schematics showing (a) the wilted pine tree pixels masked by the threshold α, (b) the
candidate bounding boxes (BBs) converted from the pixel-based result, and (c) the omission and
commission errors defined based on the locations of wilted pine trees and BBs.

2.3.5. Accuracy Assessment

The proposed spatiotemporal change detection method as well as the single-date
image classification method were evaluated for the five field sites. For the spatiotemporal
change detection, all of the 203 wilted pine trees can be used for validation, while for
the single-date classification, 60% of the samples at Sites C and D were already used for
training so the rest wilted pine trees were selected as validation data. To match the feature
points recorded in field survey with the BBs generated by detection algorithms, referring
to White et al. [17], we defined true positive, omission and commission errors according
to the following rules: true positive is defined as wilted pine trees falling within the BBs;
when an actual wilted pine tree does not fall in any BB, it is recorded as an omission error;
when there is no actual wilted pine in a BB, it is defined as a commission error (Figure 5c).
The producer’s accuracy was defined as the proportion of the number of wilted pine trees
correctly detected to the number of actual wilted pine trees, and the user accuracy was
defined as the proportion of the number of BBs containing actual wilted pine trees to the
total number of BBs in the detection results.
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3. Results
3.1. Spatial and Temporal Patterns of PWD-Induced Wilting

The NGRDI observations in 2018 and 2019 for six typical cover types, including wilted
pine tree caused by PWD in 2019 as well as healthy pine tree, deciduous tree, grass, crop,
and barren, were used to construct a scatter plot (Figure 6). A total of 300 pixels (50 pixels
per cover type) were randomly selected from the sample set. In general, the NGRDI
observations is correlated with the coverage of green vegetation as well as the color of the
canopy. Pixels of healthy pine trees have higher NGRDI observations, while barren areas
have the lowest NGRDI observations. The NGRDI observations of deciduous trees, grass,
and crops are distributed around 0, with positive and negative values. In addition, the
NGRDI observations for 2018 and 2019 were very close if there was no land (or surface)
cover change, while those for pine trees infected with PWD in 2019 clearly deviated from
the 1:1 line, mostly falling in the fourth quadrant of the coordinate system.
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Figure 6. Scatter plot derived using the NGRDI observations for pixels belongs to typical land (or
surface) cover types in 2018 and 2019. The wilted pine trees were caused by the PWD in 2019, and
there were no land (or surface) cover change for the rest pixels between the two times.

The spatial distributions of NGRDI for those two years at Site A are shown in Figure 7.
Pixels appeared to be non-green in the true-color images (e.g., non-vegetation cover, dis-
colored deciduous trees, and wilted pine trees) also showed low NGRDI observations.
Among these cover types, other than the fact that some of the NGRDI observations of
barren is significantly lower (<−0.05), there are no significant differences between the
NGRDI observations of the wilted pine trees and those of other types of pixels. Comparing
the images for those two years, NGRDI observations changed for locations with pine trees
infected with PWD in 2019.

The bi-temporal change index ∆NGRDI was calculated to highlight the pine pixels
infected with PWD in 2019 (e.g., at Site A, Figure 8a). It is evident that the ∆NGRDI of
wilted pine trees is at low levels throughout the entire image, while the other pixels with
no land (or surface) cover change showed almost no differences (∆NGRDI is close to 0)
because the cover type did not change. Nevertheless, there are also pixels with similar
∆NGRDI to the wilted pine trees in the image. Apart from some noise, the most obvious
object is a patch of bare ground formed in 2019 in the lower part of the image. After
convolution on ∆NGRDI, a large amount of noise was weakened (Figure 8b). Although
the bare ground maintains similar color-changing characteristics, the spatial extent is
broader than that of a single wilted pine tree.
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Figure 7. The true-color PlanetScope image and the NGRDI mapping at Site A on 22 October 2018 (a,c) and 15 October
2018 (b,d).
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Figure 8. Mapping of the ∆NGRDI (a) and the Conv (b) at Site A.

3.2. Comparison of Spatiotemporal Change Detection and Single-Date Classification

All of the newly added wilted pine trees with canopy width greater than 3 m were
collected to assess the relationship between the accuracies and the thresholds of α and N.
The specific producer accuracy as well as user accuracy under different α and N values
are listed in Tables A1 and A2 in Appendix A, respectively. Due to the trade-off between
the producer and the user accuracies, the α was set to 0.015 and the N was set to 16
for further analyses. We compared the advantages and disadvantages of the proposed
spatiotemporal change detection method and the single-date image classification method.
The validation results for the each field site are presented in Tables 3 and 4. Compared
to the single-date classification, the spatiotemporal change detection showed better user
accuracies for the mixed forest (Sites A, B, C, and D). Overall, the producer accuracies for
the two method were relatively close (84.7% and 82.6%), while the user accuracy for the
spatiotemporal change detection (81.2%) was significantly better than that of the single-date
classification (67.7%).

The detection results for the two methods at Site A are shown in Figure 9. The
spatiotemporal change detection correctly detected 11 of 15 wilted pine trees and missed
Nos. 2, 9, 14, and 15, and there was only one commission error (Figure 9a). The single-date
classification correctly detected 12 wilted pine trees and missed Nos. 2, 9, and 14, but
there were eight false detections, significantly more than that for spatiotemporal change
detection (Figure 9b). The eight commission errors included four discolored deciduous
trees, specifically Nos. i, ii, iii, and v, along with four barren and mixed vegetation-soil
targets. Meanwhile, the detection result of the spatiotemporal change detection did not
include discolored deciduous trees at Site A.

Table 3. Validation results for PWD detection based on the spatiotemporal change detection method.

Site Total Wilted Trees
for Validation

True Positive
(Tree Count)

Omission Errors
(Tree Count)

Commission Errors
(BB Count)

Producer’s
Accuracy

User’s
Accuracy

A 12 11 1 2 91.7% 84.6%
B 6 5 1 2 83.3% 71.4%
C 90 79 11 15 87.8% 83.0%
D 28 22 6 4 78.6% 84.0%
E 67 55 12 14 82.1% 78.1%

Total 203 172 31 37 84.7% 81.2%
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Table 4. Validation results for PWD detection based on the single-date image classification method.

Site Total Wilted Trees
for Validation

True Positive
(Tree Count)

Omission Errors
(Tree Count)

Commission Errors
(BB Count)

Producer’s
Accuracy

User’s
Accuracy

A 12 12 0 8 100.0% 60.0%
B 6 5 1 4 83.3% 55.6%
C 36 * 30 6 16 83.3% 63.6%
D 11 * 9 2 6 81.8% 60.0%
E 67 53 14 16 79.1% 76.1%

Total 132 109 23 50 82.6% 67.7%
∗ A part of wilted pine trees at Sites C and D that used for classifier training was not involved.
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Figure 9. Comparison of the detection result through spatiotemporal change detection method (a) and single-date image
classification method (b) at Site A.

4. Discussion
4.1. General Framework of Tree-Scale PWD Monitoring

For satellite remote sensing, whether a wilted pine tree could be detected or on what
canopy width could a wilted pine tree be detected largely depend on the spatial resolution
of remote sensing images [17,18,29,35]. Generally, the ideal spatial resolution of the satellite
image need to reach the canopy width of the pine tree to be detected [34]. Thus, the main
reason why the wilted pine trees Nos. 2, 9, 14, and 15 at Site A were not identified were due
to the limitations of the resolution of the PlanetScope image. In terms of temporal feature,
this study has demonstrated that it is feasible to use two images with similar dates in
adjacent years to distinguish the wilted pine trees from other confusing targets. In addition,
we believe that attempts to analyze two or more images from the same year when PWD
occurs are worthwhile. Despite the relatively limited channels for current high-resolution
satellite sensors, it is undeniable that richer spectral information inevitably lead to further
improvements in accuracy. The advantage of STM in the PWD detection is that it effectively
reduces false detections caused by easily confused targets, which are particularly abundant
in mixed or fragmented forests. Therefore, the spatiotemporal change detection is more
advantageous in such complex landscapes.
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In this study, the NGRDI is based on the red and green bands, mainly reflecting the
color of pixels. Similar to NDVI [37], RGI [18], and other indices, NGRDI also could indicate
the growth states and the canopy traits of vegetation [38–41]. We chose the index with the
normalized difference form to further eliminate errors caused by the inconsistencies in
radiation between different images [36]. Another reason for choosing NGRDI is that it has
a natural threshold of 0. The plus or minus sign for NGRDI indicates whether a pixel is
“greenish” or “reddish”, which is friendly to some threshold settings. In the spatial filtering,
the setting of the convolution kernel should match the spatial pattern of the color-changing
pine tree on the remote sensing image. Alternatively, the commonly used Sobel, Difference
of Gaussian, and Laplace of Gaussian operators [42] can also be used as convolution kernels
to enhance the spatial feature of the wilted pine trees in the image.

4.2. Advantages of Spatiotemporal Change Detection Method

The widely used single-date classification mainly relies on the spectral information
of an image and could yield a good performance for PWD detection in the pure pine
forest [17,22,23]. The false detections for this method mainly include discolored deciduous
trees, brown herbaceous, and sparsely vegetated area (including mixed pixels at the
junctions of forest and bare soil). Their characteristics on optical remote sensing images
are very similar to the wilted pine trees caused by PWD, and the corresponding values of
the spectral indices are close (Figures 6 and 7). However, high-resolution imagery usually
contains only four bands of blue, green, red, and near-infrared, which inevitably leads to a
large number of commission errors in the detection results. Even if the producer accuracy
is high, an excessive number of commission errors still reduces the applicability of the
single-date classification. Wulder et al. [19] insisted that multi-temporal images can be used
to achieve a higher detection accuracy. In this study, for two images taken on similar dates
in different years, if the land (or surface) cover does not change, the NGRDI observations of
the cover types that are easy to be confused with wilted pine trees will remain unchanged,
while the those of pine trees after wilting will significantly decrease (Figure 6). Therefore,
the ∆NGRDI with the temporal feature can effectively distinguish the wilted pine trees
from commonly confused objects.

In addition to the abovementioned cover types, there were pixels that are similar to
the wilted pine trees in the ∆NGRDI image (Figure 8a), which can be divided into two
categories: (1) human or natural behaviors, such as felling, fallowing, and disasters that
lead to the reduction in green vegetation coverage, in which are characterized by large
changes in NGRDI and a spatial scale broader than the wilting process of a single pine tree,
and (2) the noise caused by differences in atmospheric conditions, radiation, or phenology
between the two images [43], in which the distinctive feature of this type of interference
is that the magnitude of the change in NGRDI is relatively small while the spatial scale
is similar to that of the discoloration of pine trees. Therefore, we constructed a kernel
based on the spatial pattern of wilted pine trees to perform a convolution operation on
∆NGRDI, so that the pixels conforming to the spatial characteristics of wilted pine trees
were enhanced and the noise was weakened (Figure 9b). The remaining large-scale changes
of the cover type could be filtered by restricting the pixel counts of each BB.

Although the reported producer accuracies based on the spatiotemporal change
detection method and the single-date classification were similar, the commission error
results for spatiotemporal change detection were significantly lower than those for the
single-date classification (Tables 3 and 4). For example, in the results for Site A, the
commission errors for the single-date classification accounted for 40% (8 of 20) of the total
BBs, and the discolored deciduous trees and pixels with low vegetation cover were not
effectively eliminated (Figure 9b). Although the single-date classification successfully
detected the No. 15 wilted tree that spatiotemporal change detection had missed, the
possible reason is that the No. 15 tree and the adjacent No. vi discolored deciduous
tree were detected at the same time; however, this cannot prove that the frequency of
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omissions of the single-date classification might be lower than that of the spatiotemporal
change detection.

4.3. Error Source of the Spatiotemporal Change Detection Method

The main source of commission is the specific land (or surface) cover change with the
manifestation of a reduction in greenness at a small spatial scale, which closely resembles
the discoloration process caused by PWD. For example, if there is a small area of logging
coincided with the tree wilting in the forest, the temporal behaviors and spatial patterns
of these two events are very similar. In this situation, the proposed method may not be
able to determine to which kind of cover change it belongs. A conceivable solution is to
track subtle temporal behaviors using dense image time series instead of the bi-temporal
analysis. It should also be admitted that the spatiotemporal change detection method used
in this paper may not effectively detect large continuous wilted pine trees because they are
probably filtered out in the area-screening step. However, this situation is very rare except
in the case in which the infected pine forest has not been treated for many years. Although
the spatiotemporal change detection method in this study showed better accuracies, it is
worth noting that the result is only for the newly added wilted trees between the two times.
The time interval between the two image should not be too long to avoid the excessive
land (or surface) cover change confused with tree wilting. In addition, the requirements for
coregistration and relative radiation normalization of the spatiotemporal change detection
method are relatively high.

5. Conclusions

In this study, we proposed a new perspective based on spatiotemporal change de-
tection for the tree-scale PWD detection in a complex landscape with mixed forest and
fragmented land cover. The approach captured spatial and temporal patterns of the PWD-
induced wilting through a bi-temporal analysis and a spatial enhancement. The results
showed that the proposed method can effectively distinguish wilted pine trees from dis-
colored deciduous trees, sparsely vegetated regions, and many other objects with which
they are easily confused. The user’s accuracies for the proposed method were significantly
higher (81.2%) than those for the single-date classification (67.7%). By not limiting our-
selves to a specific method, we are more focused on proposing a spatiotemporal feature
extraction strategy that effectively address targets that cannot be distinguished solely by
spectral information, with a goal toward advancing research on remote sensing monitoring
of forest pests and diseases.
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Appendix A

We evaluated how producer accuracy and user accuracy vary as functions of the
probability of the threshold α and N. The α was increased from 0.01 to 0.02 at an in-
terval of 0.001, and N was increased from 1 to 36 to cover the possible sizes of the BBs
(approximately squared).

Table A1. The producer accuracy with different α and N. The bold numbers indicate the best param-
eters.

N
α

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

1 30.8% 29.5% 28.8% 27.4% 25.9% 24.8% 24.0% 22.7% 21.5% 19.4% 15.6%
2 39.5% 38.1% 36.2% 35.0% 33.5% 31.6% 29.6% 26.5% 23.5% 23.3% 21.9%
4 47.4% 45.9% 43.9% 42.0% 41.2% 40.1% 37.2% 36.3% 32.7% 30.5% 26.4%
6 60.0% 58.7% 56.0% 53.4% 51.0% 48.5% 48.5% 45.3% 40.5% 40.5% 34.8%
9 69.4% 66.8% 64.5% 64.3% 63.7% 61.2% 60.0% 56.8% 52.4% 51.4% 46.3%
12 80.0% 78.9% 76.9% 76.5% 73.6% 71.3% 69.7% 69.3% 65.4% 57.7% 57.4%
16 89.2% 88.6% 88.0% 86.4% 85.9% 84.7% 80.7% 77.6% 69.2% 68.6% 55.2%
20 91.7% 90.4% 88.6% 86.2% 85.4% 82.7% 78.0% 73.2% 67.9% 65.5% 62.9%
25 94.8% 93.2% 92.4% 90.8% 88.6% 85.1% 80.5% 75.8% 71.5% 66.1% 53.5%
30 96.0% 95.7% 94.6% 92.4% 90.6% 89.2% 86.2% 81.2% 79.6% 76.2% 74.2%
36 96.5% 95.8% 95.1% 94.5% 94.4% 91.8% 91.5% 87.1% 84.6% 75.8% 67.1%

Table A2. The user accuracy with different α and N. The bold numbers indicate the best parameters.

N
α

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

1 56.9% 62.4% 66.7% 71.3% 76.2% 80.7% 82.1% 83.6% 87.8% 92.1% 93.2%
2 58.0% 66.8% 71.6% 77.3% 79.3% 81.6% 83.5% 84.2% 87.3% 91.6% 92.8%
4 58.3% 69.3% 73.2% 78.6% 80.2% 82.5% 82.9% 85.5% 86.9% 89.8% 92.6%
6 58.8% 65.9% 68.2% 70.3% 73.3% 82.1% 83.1% 84.9% 85.5% 88.2% 91.5%
9 58.0% 62.4% 63.9% 69.0% 72.1% 81.9% 82.5% 84.4% 85.2% 87.9% 90.1%
12 55.7% 65.6% 69.8% 70.2% 76.8% 81.5% 82.2% 83.8% 85.0% 86.5% 87.7%
16 54.4% 61.9% 71.9% 76.1% 78.3% 81.2% 82.0% 83.2% 84.5% 86.6% 89.1%
20 45.7% 47.0% 53.3% 57.8% 60.3% 72.6% 75.1% 78.3% 79.2% 80.9% 82.3%
25 39.2% 44.7% 45.0% 46.8% 48.5% 48.9% 50.0% 50.4% 51.7% 52.1% 62.9%
30 31.1% 37.0% 39.1% 39.3% 40.3% 41.8% 42.8% 43.5% 44.2% 44.3% 44.7%
36 17.7% 20.3% 22.9% 26.8% 28.3% 29.9% 31.7% 33.5% 34.8% 35.2% 35.1%
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